Quantitative uniform exponential acceleration of averages along decaying waves
- Authors: Tong Z.1, Li Y.1,2
-
Affiliations:
- School of Mathematics, Jilin University, P. R. China
- Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, P. R. China
- Issue: Vol 89, No 6 (2025)
- Pages: 131-161
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/358692
- DOI: https://doi.org/10.4213/im9666
- ID: 358692
Cite item
Abstract
In this study, utilizing a specific exponential weighting function, we investigate the uniform exponential convergence of weighted Birkhoff averages along decaying waves and delve into several related variants. A key distinction from traditional scenarios is evident here: despite reduced regularity in observables, our method still maintains exponential convergence. In particular, we develop new techniques that yield very precise rates of exponential convergence, as evidenced by numerical simulations. Furthermore, this innovative approach extends to quantitative analyses involving different weighting functions employed by others, surpassing the limitations inherent in prior research. It also enhances the exponential convergence rates of weighted Birkhoff averages along quasi-periodic orbits via analytic observables. To the best of our knowledge, this is the first result on the uniform exponential acceleration beyond averages along quasi-periodic or almost periodic orbits, particularly from a quantitative perspective.
About the authors
Zhicheng Tong
School of Mathematics, Jilin University, P. R. China
Email: tongzc20@mails.jlu.edu.cn
Yong Li
School of Mathematics, Jilin University, P. R. China; Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, P. R. ChinaPhD, Professor
References
- A. Belotto da Silva, E. Bierstone, A. Kiro, “Sharp estimates for blowing down functions in a Denjoy–Carleman class”, Int. Math. Res. Not. IMRN, 2022:13 (2022), 9685–9707
- D. Blessing, J. D. Mireles James, “Weighted Birkhoff averages and the parameterization method”, SIAM J. Appl. Dyn. Syst., 23:3 (2024), 1766–1804
- R. Calleja, A. Celletti, J. Gimeno, R. de la Llave, “Accurate computations up to breakdown of quasi-periodic attractors in the dissipative spin-orbit problem”, J. Nonlinear Sci., 34:1 (2024), 12, 38 pp.
- S. Das, J. A. Yorke, “Super convergence of ergodic averages for quasiperiodic orbits”, Nonlinearity, 31:2 (2018), 491–501
- S. Das, Y. Saiki, E. Sander, J. A. Yorke, “Quantitative quasiperiodicity”, Nonlinearity, 30:11 (2017), 4111–4140
- D. Dolgopyat, B. Fayad, “Deviations of ergodic sums for toral translations II. Boxes”, Publ. Math. Inst. Hautes Etudes Sci., 132 (2020), 293–352
- D. Dudal, P. De Fabritiis, M. S. Guimaraes, I. Roditi, S. P. Sorella, “Maximal violation of the Bell–Clauser–Horne–Shimony–Holt inequality via bumpified Haar wavelets”, Phys. Rev. D, 108:8 (2023), L081701, 7 pp.
- N. Duignan, J. D. Meiss, “Nonexistence of invariant tori transverse to foliations: an application of converse KAM theory”, Chaos, 31 (2021), 013124, 19 pp.
- N. Duignan, J. D. Meiss, “Distinguishing between regular and chaotic orbits of flows by the weighted Birkhoff average”, Phys. D, 449 (2023), 133749, 16 pp.
- G. Forni, “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math. (2), 155:1 (2002), 1–103
- L. Grafakos, Classical Fourier analysis, Grad. Texts in Math., 249, 3rd ed., Springer, New York, 2014, xviii+638 pp.
- M. R. Herman, “Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations”, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5–233
- Y. Katznelson, An introduction to harmonic analysis, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2004, xviii+314 pp.
- V. V. Kozlov, “On the ergodic theory of equations of mathematical physics”, Russ. J. Math. Phys., 28:1 (2021), 73–83
- U. Krengel, “On the speed of convergence in the ergodic theorem”, Monatsh. Math., 86:1 (1978/79), 3–6
- J. Laskar, “Frequency analysis for multi-dimensional systems. Global dynamics and diffusion”, Phys. D, 67:1-3 (1993), 257–281
- J. Laskar, “Frequency analysis of a dynamical system”, Qualitative and quantitative behaviour of planetary systems (Ramsau, 1992), Celestial Mech. Dynam. Astronom., 56:1-2 (1993), 191–196
- J. Laskar, “Introduction to frequency map analysis”, Hamiltonian systems with three or more degrees of freedom (S'Agaro, 1995), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, 1999, 134–150
- Guanggang Liu, Yong Li, Xue Yang, “Existence and multiplicity of rotating periodic solutions for resonant Hamiltonian systems”, J. Differential Equations, 265:4 (2018), 1324–1352
- Guanggang Liu, Yong Li, Xue Yang, “Existence and multiplicity of rotating periodic solutions for Hamiltonian systems with a general twist condition”, J. Differential Equations, 369 (2023), 229–252
- J. D. Meiss, E. Sander, “Birkhoff averages and the breakdown of invariant tori in volume-preserving maps”, Phys. D, 428 (2021), 133048, 20 pp.
- R. Montalto, M. Procesi, “Linear Schrödinger equation with an almost periodic potential”, SIAM J. Math. Anal., 53:1 (2021), 386–434
- J. D. Meiss, E. Sander, “Resonance and weak chaos in quasiperiodically-forced circle maps”, Commun. Nonlinear Sci. Numer. Simul., 142 (2025), 108562, 14 pp.
- I. Podvigin, “On the pointwise rate of convergence in the Birkhoff ergodic theorem: recent results”, Ergodic theory and dynamical systems, Proceedings of the workshops University of North Carolina at Chapel Hill 2021, De Gruyter Proc. Math., De Gruyter, Berlin, 2024, 117–125
- M. Ruth, D. Bindel, “Finding Birkhoff averages via adaptive filtering”, Chaos, 34:12 (2024), 123109, 20 pp.
- D. A. Salamon, “The Kolmogorov–Arnold–Moser theorem”, Math. Phys. Electron. J., 10 (2004), 3, 37 pp.
- E. Sander, J. D. Meiss, “Birkhoff averages and rotational invariant circles for area-preserving maps”, Phys. D, 411 (2020), 132569, 19 pp.
- E. Sander, J. D. Meiss, Computing Lyapunov exponents using weighted Birkhoff averages
- E. M. Stein, R. Shakarchi, Fourier analysis. An introduction, Princeton Lect. Anal., 1, Princeton Univ. Press, Princeton, NJ, 2003, xvi+311 pp.
- S. Sternberg, “Local contractions and a theorem of Poincare”, Amer. J. Math., 79:4 (1957), 809–824
- S. Sternberg, “On the structure of local homeomorphisms of Euclidean $n$-space. II”, Amer. J. Math., 80:3 (1958), 623–631
- Zhicheng Tong, Yong Li, “Exponential convergence of the weighted Birkhoff average”, J. Math. Pures Appl. (9), 188 (2024), 470–492
- Zhicheng Tong, Yong Li, “A note on exponential convergence of Cesàro weighted Birkhoff average and multimodal weighted approach”, Acta Math. Sin. (Engl. Ser.), 41:9 (2025), 2301–2323
- Zhicheng Tong, Yong Li, Universal exponential pointwise convergence for weighted multiple ergodic averages over $mathbb{T}^infty$
- Wang Shuai, Li Yong, Yang Xue, “Synchronization, symmetry and rotating periodic solutions in oscillators with Huygens' coupling”, Phys. D, 434 (2022), 133208, 22 pp.
- Jiamin Xing, Xue Yang, Yong Li, “Lyapunov center theorem on rotating periodic orbits for Hamiltonian systems”, J. Differential Equations, 363 (2023), 170–194
- J.-C. Yoccoz, “Sur la disparition de proprietes de type {D}enjoy–{K}oksma en dimension $2$”, C. R. Acad. Sci. Paris Ser. A-B, 291:13 (1980), A655–A658
- J.-C. Yoccoz, “Centralisateurs et conjugaison differentiable des diffeomorphismes du cercle”, Petits diviseurs en dimension $1$, Asterisque, 231, Soc. Math. France, Paris, 1995, 89–242
- D. Zeilberger, W. Zudilin, “The irrationality measure of $pi$ is at most $7.103205334137…$”, Mosc. J. Comb. Number Theory, 9:4 (2020), 407–419
- Wenmeng Zhang, Kening Lu, Weinian Zhang, “Differentiability of the conjugacy in the Hartman–Grobman theorem”, Trans. Amer. Math. Soc., 369:7 (2017), 4995–5030
Supplementary files
