Quantitative uniform exponential acceleration of averages along decaying waves
- Authors: Tong Z.1, Li Y.1,2
-
Affiliations:
- School of Mathematics, Jilin University, P. R. China
- Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, P. R. China
- Issue: Vol 89, No 6 (2025)
- Pages: 131-161
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/358692
- DOI: https://doi.org/10.4213/im9666
- ID: 358692
Cite item
Abstract
About the authors
Zhicheng Tong
School of Mathematics, Jilin University, P. R. China
Email: tongzc20@mails.jlu.edu.cn
Yong Li
School of Mathematics, Jilin University, P. R. China; Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, P. R. ChinaPhD, Professor
References
- A. Belotto da Silva, E. Bierstone, A. Kiro, “Sharp estimates for blowing down functions in a Denjoy–Carleman class”, Int. Math. Res. Not. IMRN, 2022:13 (2022), 9685–9707
- D. Blessing, J. D. Mireles James, “Weighted Birkhoff averages and the parameterization method”, SIAM J. Appl. Dyn. Syst., 23:3 (2024), 1766–1804
- R. Calleja, A. Celletti, J. Gimeno, R. de la Llave, “Accurate computations up to breakdown of quasi-periodic attractors in the dissipative spin-orbit problem”, J. Nonlinear Sci., 34:1 (2024), 12, 38 pp.
- S. Das, J. A. Yorke, “Super convergence of ergodic averages for quasiperiodic orbits”, Nonlinearity, 31:2 (2018), 491–501
- S. Das, Y. Saiki, E. Sander, J. A. Yorke, “Quantitative quasiperiodicity”, Nonlinearity, 30:11 (2017), 4111–4140
- D. Dolgopyat, B. Fayad, “Deviations of ergodic sums for toral translations II. Boxes”, Publ. Math. Inst. Hautes Etudes Sci., 132 (2020), 293–352
- D. Dudal, P. De Fabritiis, M. S. Guimaraes, I. Roditi, S. P. Sorella, “Maximal violation of the Bell–Clauser–Horne–Shimony–Holt inequality via bumpified Haar wavelets”, Phys. Rev. D, 108:8 (2023), L081701, 7 pp.
- N. Duignan, J. D. Meiss, “Nonexistence of invariant tori transverse to foliations: an application of converse KAM theory”, Chaos, 31 (2021), 013124, 19 pp.
- N. Duignan, J. D. Meiss, “Distinguishing between regular and chaotic orbits of flows by the weighted Birkhoff average”, Phys. D, 449 (2023), 133749, 16 pp.
- G. Forni, “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math. (2), 155:1 (2002), 1–103
- L. Grafakos, Classical Fourier analysis, Grad. Texts in Math., 249, 3rd ed., Springer, New York, 2014, xviii+638 pp.
- M. R. Herman, “Sur la conjugaison differentiable des diffeomorphismes du cercle a des rotations”, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 5–233
- Y. Katznelson, An introduction to harmonic analysis, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2004, xviii+314 pp.
- V. V. Kozlov, “On the ergodic theory of equations of mathematical physics”, Russ. J. Math. Phys., 28:1 (2021), 73–83
- U. Krengel, “On the speed of convergence in the ergodic theorem”, Monatsh. Math., 86:1 (1978/79), 3–6
- J. Laskar, “Frequency analysis for multi-dimensional systems. Global dynamics and diffusion”, Phys. D, 67:1-3 (1993), 257–281
- J. Laskar, “Frequency analysis of a dynamical system”, Qualitative and quantitative behaviour of planetary systems (Ramsau, 1992), Celestial Mech. Dynam. Astronom., 56:1-2 (1993), 191–196
- J. Laskar, “Introduction to frequency map analysis”, Hamiltonian systems with three or more degrees of freedom (S'Agaro, 1995), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, 1999, 134–150
- Guanggang Liu, Yong Li, Xue Yang, “Existence and multiplicity of rotating periodic solutions for resonant Hamiltonian systems”, J. Differential Equations, 265:4 (2018), 1324–1352
- Guanggang Liu, Yong Li, Xue Yang, “Existence and multiplicity of rotating periodic solutions for Hamiltonian systems with a general twist condition”, J. Differential Equations, 369 (2023), 229–252
- J. D. Meiss, E. Sander, “Birkhoff averages and the breakdown of invariant tori in volume-preserving maps”, Phys. D, 428 (2021), 133048, 20 pp.
- R. Montalto, M. Procesi, “Linear Schrödinger equation with an almost periodic potential”, SIAM J. Math. Anal., 53:1 (2021), 386–434
- J. D. Meiss, E. Sander, “Resonance and weak chaos in quasiperiodically-forced circle maps”, Commun. Nonlinear Sci. Numer. Simul., 142 (2025), 108562, 14 pp.
- I. Podvigin, “On the pointwise rate of convergence in the Birkhoff ergodic theorem: recent results”, Ergodic theory and dynamical systems, Proceedings of the workshops University of North Carolina at Chapel Hill 2021, De Gruyter Proc. Math., De Gruyter, Berlin, 2024, 117–125
- M. Ruth, D. Bindel, “Finding Birkhoff averages via adaptive filtering”, Chaos, 34:12 (2024), 123109, 20 pp.
- D. A. Salamon, “The Kolmogorov–Arnold–Moser theorem”, Math. Phys. Electron. J., 10 (2004), 3, 37 pp.
- E. Sander, J. D. Meiss, “Birkhoff averages and rotational invariant circles for area-preserving maps”, Phys. D, 411 (2020), 132569, 19 pp.
- E. Sander, J. D. Meiss, Computing Lyapunov exponents using weighted Birkhoff averages
- E. M. Stein, R. Shakarchi, Fourier analysis. An introduction, Princeton Lect. Anal., 1, Princeton Univ. Press, Princeton, NJ, 2003, xvi+311 pp.
- S. Sternberg, “Local contractions and a theorem of Poincare”, Amer. J. Math., 79:4 (1957), 809–824
- S. Sternberg, “On the structure of local homeomorphisms of Euclidean $n$-space. II”, Amer. J. Math., 80:3 (1958), 623–631
- Zhicheng Tong, Yong Li, “Exponential convergence of the weighted Birkhoff average”, J. Math. Pures Appl. (9), 188 (2024), 470–492
- Zhicheng Tong, Yong Li, “A note on exponential convergence of Cesàro weighted Birkhoff average and multimodal weighted approach”, Acta Math. Sin. (Engl. Ser.), 41:9 (2025), 2301–2323
- Zhicheng Tong, Yong Li, Universal exponential pointwise convergence for weighted multiple ergodic averages over $mathbb{T}^infty$
- Wang Shuai, Li Yong, Yang Xue, “Synchronization, symmetry and rotating periodic solutions in oscillators with Huygens' coupling”, Phys. D, 434 (2022), 133208, 22 pp.
- Jiamin Xing, Xue Yang, Yong Li, “Lyapunov center theorem on rotating periodic orbits for Hamiltonian systems”, J. Differential Equations, 363 (2023), 170–194
- J.-C. Yoccoz, “Sur la disparition de proprietes de type {D}enjoy–{K}oksma en dimension $2$”, C. R. Acad. Sci. Paris Ser. A-B, 291:13 (1980), A655–A658
- J.-C. Yoccoz, “Centralisateurs et conjugaison differentiable des diffeomorphismes du cercle”, Petits diviseurs en dimension $1$, Asterisque, 231, Soc. Math. France, Paris, 1995, 89–242
- D. Zeilberger, W. Zudilin, “The irrationality measure of $pi$ is at most $7.103205334137…$”, Mosc. J. Comb. Number Theory, 9:4 (2020), 407–419
- Wenmeng Zhang, Kening Lu, Weinian Zhang, “Differentiability of the conjugacy in the Hartman–Grobman theorem”, Trans. Amer. Math. Soc., 369:7 (2017), 4995–5030
Supplementary files
