Segal–Bargmann transform for generalized partial-slice monogenic functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The concept of generalized partial-slice monogenic functions has been recently introduced to include the two theories of monogenic functions and of slice monogenic functions over Clifford algebras. The main purpose of this article is to develop the Segal–Bargmann transform and give a Schrödinger representation in the setting of generalized partial-slice monogenic functions. To this end, the generalized partial-slice Cauchy–Kovalevskaya extension plays a crucial role.

About the authors

Zhenghua Xu

School of Mathematics, Hefei University of Technology, Hefei, P. R. China

Email: zhxu@hfut.edu.cn

Irene Sabadini

Politecnico di Milano, Dipartimento di Matematica, Milano, Italy

Email: irene.sabadini@polimi.it

References

  1. A. Arai, Analysis on Fock spaces and mathematical theory of quantum fields. An introduction to mathematical analysis of quantum fields, World Sci. Publ., Hackensack, NJ, 2018, xxx+862 pp.
  2. V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform”, Comm. Pure Appl. Math., 14:3 (1961), 187–214
  3. S. Bernstein, S. Schufmann, “The Segal–Bargmann transform in Clifford analysis”, New directions in function theory: from complex to hypercomplex to non-commutative, Oper. Theory Adv. Appl., 286, Linear Oper. Linear Syst., Birkhäuser/Springer, Cham, 2021, 29–52
  4. F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Res. Notes in Math., 76, Pitman, Boston, MA, 1982, x+308 pp.
  5. L. Cnudde, H. De Bie, “Slice Segal–Bargmann transform”, J. Phys. A, 50:25 (2017), 255207, 23 pp.
  6. F. Colombo, I. Sabadini, D. C. Struppa, “Slice monogenic functions”, Israel J. Math., 171 (2009), 385–403
  7. F. Colombo, I. Sabadini, D. C. Struppa, Noncommutative functional calculus. Theory and applications of slice hyperholomorphic functions, Progr. Math., 289, Birkhäuser/Springer Basel AG, Basel, 2011, vi+221 pp.
  8. Pei Dang, J. Mourão, J. P. Nunes, Tao Qian, “Clifford coherent state transforms on spheres”, J. Geom. Phys., 124 (2018), 225–232
  9. A. De Martino, K. Diki, “On the quaternionic short-time Fourier and Segal–Bargmann transforms”, Mediterr. J. Math., 18:3 (2021), 110, 22 pp.
  10. R. Delanghe, F. Sommen, V. Souček, Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Math. Appl., 53, Kluwer Acad. Publ., Dordrecht, 1992, xviii+485 pp.
  11. K. Diki, “The Cholewinski–Fock space in the slice hyperholomorphic setting”, Math. Methods Appl. Sci., 42:6 (2019), 2124–2141
  12. K. Diki, A. Ghanmi, “A quaternionic analogue of the Segal–Bargmann transform”, Complex Anal. Oper. Theory, 11:2 (2017), 457–473
  13. K. Diki, R. S. Krausshar, I. Sabadini, “On the Bargmann–Fock–Fueter and Bergman–Fueter integral transforms”, J. Math. Phys., 60:8 (2019), 083506, 26 pp.
  14. K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic functions in the plane and $n$-dimensional space, Transl. from the German, Birkhäuser Verlag, Basel, 2008, xiv+394 pp.
  15. B. C. Hall, “Holomorphic methods in analysis and mathematical physics”, First summer school in analysis and mathematical physics (Cuernavaca Morelos, 1998), Contemp. Math., 260, Aportaciones Mat., Amer. Math. Soc., Providence, RI, 2000, 1–59
  16. B. C. Hall, Quantum theory for mathematicians, Grad. Texts in Math., 267, Springer, New York, 2013, xvi+554 pp.
  17. W. D. Kirwin, J. Mourão, J. P. Nunes, Tao Qian, “Extending coherent state transforms to Clifford analysis”, J. Math. Phys., 57:10 (2016), 103505, 10 pp.
  18. J. Mourão, J. P. Nunes, Tao Qian, “Coherent state transforms and the Weyl equation in Clifford analysis”, J. Math. Phys., 58:1 (2017), 013503, 12 pp.
  19. D. Peña Peña, I. Sabadini, F. Sommen, “Segal–Bargmann–Fock modules of monogenic functions”, J. Math. Phys., 58:10 (2017), 103507, 9 pp.
  20. I. E. Segal, “The complex-wave representation of the free boson field”, Topics in functional analysis, Essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday, Adv. Math. Suppl. Stud., 3, Academic Press, Inc., New York–London, 1978, 321–343
  21. Zhenghua Xu, Guangbin Ren, “Sharper uncertainty principles in quaternionic Hilbert spaces”, Math. Methods Appl. Sci., 43:4 (2020), 1608–1630
  22. Zhenghua Xu, I. Sabadini, “Generalized partial-slice monogenic functions”, Trans. Amer. Math. Soc., 378:2 (2025), 851–883
  23. Zhenghua Xu, I. Sabadini, “On the Fueter–Sce theorem for generalized partial-slice monogenic functions”, Ann. Mat. Pura Appl. (4), 204:2 (2025), 835–857
  24. Zhenghua Xu, I. Sabadini, “Generalized partial-slice monogenic functions: a synthesis of two function theories”, Adv. Appl. Clifford Algebr., 34:2 (2024), 10, 14 pp.
  25. Kehe Zhu, Analysis on Fock spaces, Grad. Texts in Math., 263, Springer, New York, 2012, x+344 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Xu Z., Sabadini I.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).