On an analogue of the fundamental Voevodsky theorem

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $k$ be a field of zero characteristic, $X$ be a $k$-smooth scheme, and $F$be an $\mathbb{A}^1$-invariant quasi-stable presheave with framed transfers.Then the corresponding Gersten complex is exact.

About the authors

Dimitrii Nikolaevich Tyurin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Leonard Euler International Mathematical Institute at Saint Petersburg (SPB LEIMI), St. Petersburg

Author for correspondence.
Email: izv@mi-ras.ru

without scientific degree

References

  1. V. Voevodsky, “Triangulated categories of motives over a field”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238
  2. V. Voevodsky, “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137
  3. V. Voevodsky, Notes on framed correspondences, unpublished, 2001, 13 pp.
  4. G. Garkusha, I. Panin, “Framed motives of algebraic varieties (after V. Voevodsky)”, J. Amer. Math. Soc., 34:1 (2021), 261–313
  5. G. Garkusha, I. Panin, “Homotopy invariant presheaves with framed transfers”, Camb. J. Math., 8:1 (2020), 1–94
  6. I. Panin, “Oriented cohomology theories of algebraic varieties. II”, Homology Homotopy Appl., 11:1 (2009), 349–405
  7. И. А. Панин, “Совершенные тройки и гомотопии отображений мотивных пространств”, Изв. РАН. Сер. матем., 83:4 (2019), 158–193
  8. F. Morel, V. Voevodsky, “$mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Etudes Sci. Publ. Math., 90 (1999), 45–143

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tyurin D.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).