On the decision problem for quantified probability logics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $\mathsf{QPL}^{\mathrm{e}}$ expand the quantifier-free “polynomial” probability logic of [4](R. Fagin et al., 1990)by adding quantifiers over arbitrary events; it can be viewed as a one-sorted elementary language for reasoning about probability spaces. We prove that the $\Sigma_2$-fragment of the $\mathsf{QPL}^{\mathrm{e}}$-theory of finite spaces is hereditarily undecidable. By earlier observations, this implies that $\Pi_2$ is the maximal decidable prefix fragment of $\mathsf{QPL}^{\mathrm{e}}$. Moreover, we obtain similar results for two natural one-sorted logics of probability that emerge from [1](M. Abadi and J. Y. Halpern, 1994).

About the authors

Stanislav Olegovich Speranski

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: katze.tail@gmail.com
Candidate of physico-mathematical sciences, no status

References

  1. M. Abadi, J. Y. Halpern, “Decidability and expressiveness for first-order logics of probability”, Inform. and Comput., 112:1 (1994), 1–36
  2. E. Börger, E. Grädel, Y. Gurevich, The classical decision problem, Perspect. Math. Logic, Springer-Verlag, Berlin, 1997, xii+482 pp.
  3. Ю. Л. Ершов, И. А. Лавров, А. Д. Тайманов, М. А. Тайцлин, “Элементарные теории”, УМН, 20:4(124) (1965), 37–108
  4. R. Fagin, J. Y. Halpern, N. Megiddo, “A logic for reasoning about probabilities”, Inform. and Comput., 87:1-2 (1990), 78–128
  5. J. Y. Halpern, “An analysis of first-order logics of probability”, Artificial Intelligence, 46:3 (1990), 311–350
  6. D. Ibeling, T. Icard, K. Mierzewski, M. Mosse, “Probing the quantitative–qualitative divide in probabilistic reasoning”, Ann. Pure Appl. Logic, 175:9 (2024), 103339, 45 pp.
  7. A. Nies, “Undecidable fragments of elementary theories”, Algebra Universalis, 35:1 (1996), 8–33
  8. A. Perovic, Z. Ognjanovic, M. Raškovic, Z. Markovic, “A probabilistic logic with polynomial weight formulas”, Foundations of information and knowledge systems (Pisa, 2008), Lecture Notes in Comput. Sci., 4932, Springer, Berlin, 2008, 239–252
  9. Z. Ognjanovic, M. Raškovic, Z. Markovic, Probability logics. Probability-based formalization of uncertain reasoning, Springer, Cham, 2016, xi+215 pp.
  10. R. M. Solovay, R. D. Arthan, J. Harrison, “Some new results on decidability for elementary algebra and geometry”, Ann. Pure Appl. Logic, 163:12 (2012), 1765–1802
  11. С. О. Сперанский, “Квантификация по пропозициональным формулам в вероятностной логике: вопросы разрешимости”, Алгебра и логика, 50:4 (2011), 533–546
  12. S. O. Speranski, “A note on hereditarily $Pi^0_1$- and $Sigma^0_1$-complete sets of sentences”, J. Logic Comput., 26:5 (2016), 1729–1741
  13. S. O. Speranski, “Quantifying over events in probability logic: an introduction”, Math. Structures Comput. Sci., 27:8 (2017), 1581–1600
  14. S. O. Speranski, “An ‘elementary’ perspective on reasoning about probability spaces”, Log. J. IGPL, 2024, jzae042, Publ. online
  15. S. O. Speranski, “Sharpening complexity results in quantified probability logic”, Log. J. IGPL, 2024, jzae114, Publ. online
  16. A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. of California Press, Berkeley–Los Angeles, CA, 1951, iii+63 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Speranski S.O.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).