On finite-dimensional homogeneous Lie algebras of derivations of polynomial rings

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For a finite set of homogeneous locally nilpotent derivations of the algebraof polynomials in several variables, a finite dimensionality criterionfor the Lie algebra generated by these derivations is known.The structure of the corresponding finite-dimensional Lie algebraswas also described in previous works. In this paper, we obtaina finite dimensionality criterion for a Lie algebra generated by a finite setof homogeneous derivations, each of which is not locally nilpotent.

About the authors

Ivan Vladimirovich Arzhantsev

National Research University Higher School of Economics, Moscow

Author for correspondence.
Email: arjantsev@hse.ru
Doctor of physico-mathematical sciences, Professor

Sergey Aleksandrovich Gaifullin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics; National Research University Higher School of Economics, Moscow

Email: sgayf@yandex.ru
Candidate of physico-mathematical sciences

Viktor Evgenyavich Lopatkin

National Research University Higher School of Economics, Moscow

Email: Wickktor@gmail.com
Candidate of physico-mathematical sciences, no status

References

  1. E. Cartan, “Les groupes de transformations continus, infinis, simples”, Ann. Sci. Ecole Norm. Sup. (3), 26 (1909), 93–161
  2. Th. Siebert, “Lie algebras of derivations and affine algebraic geometry over fields of characteristic $0$”, Math. Ann., 305 (1996), 271–286
  3. Yu. Billig, V. Futorny, “Lie algebras of vector fields on smooth affine varieties”, Comm. Algebra, 46:8 (2018), 3413–3429
  4. А. Н. Рудаков, “Подалгебры и автоморфизмы алгебр Ли картановского типа”, Функц. анализ и его прил., 20:1 (1986), 83–84
  5. V. V. Bavula, “The group of automorphisms of the Lie algebra of derivations of a polynomial algebra”, J. Algebra Appl., 16:5 (2017), 1750088, 8 pp.
  6. H. Kraft, A. Regeta, “Automorphisms of the Lie algebra of vector fields on affine $n$-space”, J. Eur. Math. Soc. (JEMS), 19:5 (2017), 1577–1588
  7. Вик. С. Куликов, “Обобщенная и локальная проблемы якобиана”, Изв. РАН. Сер. матем., 56:5 (1992), 1086–1103
  8. В. В. Горбацевич, “Полиномиальные реализации конечномерных алгебр Ли”, Функц. анализ и его прил., 54:2 (2020), 25–34
  9. J. Draisma, “On a conjecture of Sophus Lie”, Differential equations and the Stokes phenomenon (Groningen, 2001), World Sci. Publ., River Edge, NJ, 2002, 65–87
  10. H. Gradl, “Realization of Lie algebras with polynomial vector fields”, Non-associative algebra and its applications (Oviedo, 1993), Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994, 171–175
  11. В. М. Бухштабер, Д. В. Лейкин, “Полиномиальные алгебры Ли”, Функц. анализ и его прил., 36:4 (2002), 18–34
  12. I. V. Arzhantsev, E. A. Makedonskii, A. P. Petravchuk, “Finite-dimensional subalgebras in polynomial Lie algebras of rank one”, Ukrainian Math. J., 63:5 (2011), 827–832
  13. I. Arzhantsev, A. Liendo, T. Stasyuk, “Lie algebras of vertical derivations on semiaffine varieties with torus actions”, J. Pure Appl. Algebra, 225:2 (2021), 106499, 18 pp.
  14. I. Arzhantsev, M. Zaidenberg, “Tits-type alternative for groups acting on toric affine varieties”, Int. Math. Res. Not. IMRN, 2022:11 (2022), 8162–8195
  15. V. V. Bavula, “The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras”, Czechoslovak Math. J., 66(141):4 (2016), 1129–1141
  16. Liang Chen, “Differential operator Lie algebras on the ring of Laurent polynomials”, Comm. Math. Phys., 167:2 (1995), 431–469
  17. G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Invariant Theory Algebr. Transform. Groups, VII, 2nd ed., Springer-Verlag, Berlin, 2017, xxii+319 pp.
  18. I. Arzhantsev, K. Shakhmatov, “Some finiteness results on triangular automorphisms”, Results Math., 77:2 (2022), 75, 7 pp.
  19. J.-Ph. Furter, H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pp.
  20. M. Goze, Yu. Khakimdjanov, Nilpotent Lie algebras, Math. Appl., 361, Kluwer Acad. Publ., Dordrecht, 1996, xvi+336 pp.
  21. M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. Ec. Norm. Super. (4), 3:4 (1970), 507–588
  22. A. Liendo, “$mathbb{G}_a$-actions of fiber type on affine $mathbb{T}$-varieties”, J. Algebra, 324:12 (2010), 3653–3665
  23. A. Liendo, “Affine $mathbb{T}$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425
  24. H. Kraft, M. Zaidenberg, “Algebraically generated groups and their Lie algebras”, J. Lond. Math. Soc. (2), 109:2 (2024), e12866, 39 pp.
  25. V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: the Russell festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311
  26. Дж. Хамфри, Линейные алгебраические группы, Наука, M., 1980, 400 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Arzhantsev I.V., Gaifullin S.A., Lopatkin V.E.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).