Toward efficient numerical solutions of non-linear integral equations with TLD algorithm
- Authors: Sedka I.1,2,3, Khellaf A.3,4
-
Affiliations:
- Université Amar Telidji Laghouat, Algeria
- Université 8 Mai 1945 Guelma, Algeria
- Laboratoire de Mathématiques Appliquées et de Modélisation (LMAM)
- École Nationale Polytechnique de Constantine,Algeria
- Issue: Vol 89, No 2 (2025)
- Pages: 128-145
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/303950
- DOI: https://doi.org/10.4213/im9613
- ID: 303950
Cite item
Abstract
This study focuses on a specific type of non-linear second-order integral equations defined over a considerable interval. We propose a new numerical method, the TLD, in three phases: transformation of the equation, linearizationvia the Newton–Kantorovich method, and discretization withthe Nyström technique. We theoretically define the convergence conditions and illustrate the accuracy of our method on several practical examples.
About the authors
Ilyes Sedka
Université Amar Telidji Laghouat, Algeria; Université 8 Mai 1945 Guelma, Algeria; Laboratoire de Mathématiques Appliquées et de Modélisation (LMAM)
Email: di_sedka@esi.dz
Ammar Khellaf
Laboratoire de Mathématiques Appliquées et de Modélisation (LMAM); École Nationale Polytechnique de Constantine,Algeria
Author for correspondence.
Email: amarlasix@gmail.com
PhD, Associate professor
References
- K. E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge Monogr. Appl. Comput. Math., 4, Cambridge Univ. Press, Cambridge, 1997, xvi+552 pp.
- M. Ahues, F. Dias d'Almeida, R. Fernandes, P. B. Vasconcelos, “Two singularity subtraction schemes for a class of nonlinear weakly singular integral equations”, Numer. Funct. Anal. Optim., 43:9 (2022), 1114–1139
- J. A. Ezquerro Fernandez, M. A. Hernandez Veron, Newton's method: an updated approach of Kantorovich's theory, Front. Math., Birkhäuser/Springer, Cham, 2017, xii+166 pp.
- Yu Guan, Tingting Fang, Diankun Zhang, Congming Jin, “Solving Fredholm integral equations using deep learning”, Int. J. Appl. Comput. Math., 8:2 (2022), 87, 10 pp.
- L. Grammont, M. Ahues, F. D. D'Almeida, “For nonlinear infinite dimensional equations, which to begin with: linearization or discretization?”, J. Integral Equations Appl., 26:3 (2014), 413–436
- L. Grammont, “Nonlinear integral equation of the second kind: a new version of Nyström method”, Numer. Funct. Anal. Optim., 34:5 (2013), 496–515
- A. Jafarian, S. Measoomy, S. Abbasbandy, “Artificial neural networks based modeling for solving Volterra integral equations system”, Appl. Soft Comput., 27 (2015), 391–398
- D. P. Kingma, J. L. Ba, Adam: a method for stochastic optimization, The 3rd international conference on learning representations (ICLR 2015)
- S. Lemita, H. Guebbai, I. Sedka, M. Z. Aissaoui, “New method for the numerical solution of the Fredholm linear integral equation on a large interval”, Вестник российских университетов. Математика, 25:132 (2020), 387–400
- I. Sedka, S. Lemita, M. Z. Aissaoui, “Linearization-Discretization process to solve systems of nonlinear Fredholm integral equations in an infinite-dimensional context”, Adv. Theory Nonlinear Anal. Appl., 6:4 (2022), 547–564
- I. Sedka, A. Khellaf, M. Z. Aissaoui, “New algorithm to solve nonlinear functional equations applying linearization then double discretization scheme (L.D.D)”, Kuwait J. Sci., 50:2 (2023), 65–74
- Weng Cho Chew, Mei Song Tong, Bin Hu, Integral equation methods for electromagnetic and elastic waves, Synth. Lect. Comput. Electromagn., Morgan & Claypool Publ., Williston, VT, 2009, xv+241 pp.
- P. P. Zabrejko, “The mean value theorem for differentiable mappings in Banach spaces”, Integral Transform. Spec. Funct., 4:1-2 (1996), 153–162
Supplementary files
