On an analogue of Gelfond's problem for Ostrowsky expansion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers an analogue of A. O. Gelfond's problem on the distribution of sums of digits of $b$-ary expansions of natural numbers in arithmetic progressions. Instead of $b$-ary expansions,we consider expansions in the Ostrowsky numeration system associated with arbitrary irrational $\alpha$.

About the authors

Alla Adol'fovna Zhukova

Russian Academy of National Economy and Public Administration under the President of the Russian Federation (Vladimir Branch)

Author for correspondence.
Email: georg967@mail.ru
Candidate of physico-mathematical sciences, Associate professor

Anton Vladimirovich Shutov

Vladimir State University

Email: a1981@mail.ru
Doctor of physico-mathematical sciences, Associate professor

References

  1. A. O. Gelfond, “Sur les nombres qui ont des proprietes additives et multiplicatives donnees”, Acta Arith., 13:3 (1968), 259–265
  2. N. J. Fine, “The distribution of the sum of digits $(operatorname{mod}p)$”, Bull. Amer. Math. Soc., 71:4 (1965), 651–652
  3. C. Mauduit, J. Rivat, “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Ann. of Math. (2), 171:3 (2010), 1591–1646
  4. M. Drmota, C. Mauduit, J. Rivat, “The sum-of-digits function of polynomial sequences”, J. Lond. Math. Soc. (2), 84:1 (2011), 81–102
  5. M. Lamberger, J. W. Thuswaldner, “Distribution properties of digital expansions arising from linear recurrences”, Math. Slovaca, 53:1 (2003), 1–20
  6. A. Ostrowsky, “Bemerkungen zur Theorie der Diophantischen Approximationen”, Abh. Math. Semin. Univ. Hambg., 1:1 (1922), 77–98
  7. J. Coquet, G. Rhin, Ph. Toffin, “Representations des entiers naturels et independance statistique. II”, Ann. Inst. Fourier (Grenoble), 31:1 (1981), 1–15
  8. J. Coquet, G. Rhin, Ph. Toffin, “Fourier–Bohr spectrum of sequences related to continued fractions”, J. Number Theory, 17:3 (1983), 327–336
  9. D. Sharma, “Joint distribution in residue classes of the base-$q$ and Ostrowski digital sums”, Unif. Distrib. Theory, 14:2 (2019), 1–26
  10. А. А. Жукова, А. В. Шутов, “Об аналоге задачи Гельфонда для обобщенных разложений Цеккендорфа”, Чебышевский сб., 22:2 (2021), 104–120
  11. T. Stoll, “Combinatorial constructions for the Zeckendorf sum of digits of polynomial values”, Ramanujan J., 32:2 (2013), 227–243
  12. M. Drmota, J. Gajdosik, “The parity of the sum-of-digits-function of generalized Zeckendorf representations”, Fibonacci Quart., 36:1 (1998), 3–19

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Zhukova A.A., Shutov A.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).