Problems of algorithmic decidability and axiomatizability of finite subset algebra for binary operations
- Authors: Dudakov S.M.1,2
-
Affiliations:
- Tver State University
- HSE University, Moscow
- Issue: Vol 89, No 2 (2025)
- Pages: 3-24
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/303944
- DOI: https://doi.org/10.4213/im9579
- ID: 303944
Cite item
Abstract
We consider algebras of finite subsets under the assumption that theoriginal algebra is an infinite groupoid.For linear spaces over fields of finite characteristic,we prove that the finite subsets algebra is algorithmically equivalent to the first-order arithmetic.We also generalize this result to arbitrary infinite Abelian groups.As a corollary, for many classes of original algebrassuch as Abelian groups, arbitrary groups, monoids, semigroups, and general groupoids,if we consider the corresponding class of all algebras of finite subsets, it is shownthat the theory of the last class has degree of undecidabilitynot smaller than the first-order arithmetic.This also proves thatthe theories of such classes have no recursive axiomatization.For Abelian groups of finite exponent,we show that the theories of the subalgebra lattices are algorithmically undecidableand have no recursive axiomatization;also, for the class of such lattices for groups, monoids, or semigroups,we show that the theory of this class is also undecidable and has no recursive axiomatization.
About the authors
Sergey Mikhailovich Dudakov
Tver State University; HSE University, Moscow
Author for correspondence.
Email: sergeydudakov@yandex.ru
Doctor of physico-mathematical sciences, Associate professor
References
- S. Feferman, R. Vaught, “The first order properties of products of algebraic systems”, Fund. Math., 47 (1959), 57–103
- A. Mostowski, “On direct products of theories”, J. Symb. Log., 17 (1952), 1–31
- Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн, Алгоритмы: построение и анализ, 3-е изд., Вильямс, М., 2013, 1328 с.
- T. Tamura, J. Shafer, “Power semigroups”, Math. Japon., 12 (1967), 25–32
- S. Dudakov, B. Karlov, “On decidability of theories of regular languages”, Theory Comput. Syst., 65:3 (2021), 462–478
- T. Place, M. Zeitoun, “Separating regular languages with first-order logic”, Log. Methods Comput. Sci., 12:1 (2016), 5, 31 pp.
- M. Ferrara, M. Trombetti, “A lattice-theoretic characterization of pure subgroups of Abelian groups”, Ric. Mat., 72:2 (2023), 779–783
- S. M. Dudakov, “On undecidability of concatenation theory for one-symbol languages”, Lobachevskii J. Math., 41:2 (2020), 168–175
- A. Blumensath, E. Grädel, “Automatic structures”, Proceedings of the 15th annual IEEE symposium on logic in computer science (Santa Barbara, CA, 2000), IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, 51–62
- С. М. Дудаков, “Об алгоритмических свойствах алгебры конечных подмножеств некоторых уноидов”, Вестник ТвГУ. Сер. Прикл. матем., 2019, № 4, 108–116
- S. M. Dudakov, “On undecidability of subset theory for some monoids”, J. Phys. Conf. Ser., 1902 (2021), 012060, 11 pp.
- S. M. Dudakov, “On undecidability of finite subsets theory for torsion Abelian groups”, Mathematics, 10:3 (2022), 533, 14 pp.
- А. И. Кострикин, Ю. И. Манин, Линейная алгебра и геометрия, Изд-во Моск. ун-та, М., 1980, 320 с.
- Л. Фукс, Бесконечные абелевы группы, т. 1, Мир, М., 1974, 335 с.
- С. Ленг, Алгебра, Мир, М., 1968, 564 с.
- G. S. Boolos, J. P. Burgess, R. C. Jeffrey, Computability and logic, 5th ed., Cambridge Univ. Press, Cambridge, 2007, xiv+350 pp.
- Б. Н. Карлов, “Об элементарной эквивалентности некоторых уноидов и уноидов их подмножеств”, Вестник ТвГУ. Сер. Прикл. матем., 2021, № 3, 18–32
Supplementary files
