On stability of weighted spanning tree degree enumerators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In [1] it was shown that the degree (vertex) spanning tree enumerator polynomialof a connected graph $G$ is a real stable polynomial (that is, it does not vanish if all thevariables have positive imaginary parts) if and only if $G$ is a distance-hereditary graph.We prove a similar characterization for weighted graphs.With the help of this generalization, define the class of weighted distance-hereditary graphs.

About the authors

Pavel Konstantinovich Prozorov

Saint Petersburg State University

Author for correspondence.
Email: pasha07082005@gmail.com

Danila Dmitrievich Cherkashin

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Email: jiocb.orlangyr@gmail.com
Candidate of physico-mathematical sciences, Associate professor

References

  1. D. Cherkashin, F. Petrov, P. Prozorov, “On stability of spanning tree degree enumerators”, Discrete Math., 346:12 (2023), 113629, 7 pp.
  2. D. G. Wagner, “Multivariate stable polynomials: theory and applications”, Bull. Amer. Math. Soc. (N.S.), 48:1 (2011), 53–84
  3. P. Csikvari, A. Schweitzer, “A short survey on stable polynomials, orientations and matchings”, Acta Math. Hungar., 166:1 (2022), 1–16
  4. Young-Bin Choe, J. G. Oxley, A. D. Sokal, D. G. Wagner, “Homogeneous multivariate polynomials with the half-plane property”, Adv. in Appl. Math., 32:1-2 (2004), 88–187
  5. H.-J. Bandelt, H. M. Mulder, “Distance-hereditary graphs”, J. Combin. Theory Ser. B, 41:2 (1986), 182–208
  6. A. Brandstädt, Van Bang Le, J. P. Spinrad, Graph classes: a survey, SIAM Monogr. Discrete Math. Appl., SIAM, Philadelphia, PA, 1999, xii+304 pp.
  7. Sang-il Oum, “Rank-width and vertex-minors”, J. Combin. Theory Ser. B, 95:1 (2005), 79–100
  8. P. Bränden, J. Huh, “Lorentzian polynomials”, Ann. of Math. (2), 192:3 (2020), 821–891

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Prozorov P.K., Cherkashin D.D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).