On the period of the continued fraction expansion for $\sqrt{d}$

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

If $d$ is not a perfect square, we define $T(d)$ as the length of theminimal period of the simple continued fraction expansion for $\sqrt{d}$.Otherwise, we put $T(d)=0$. In the recent paper (2024), F. Battistoni,L. Grenie and G. Molteni established (in particular) an upper boundfor the second moment of $T(d)$ over the segment $x\alpha\sqrt{x}$. In this paper, we slightly improve thisresult of three authors.

About the authors

Maxim Aleksandrovich Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Author for correspondence.
Email: korolevma@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. D. R. Hickerson, “Length of period simple continued fraction expansion of $sqrt{d}$”, Pacific J. Math., 46:2 (1973), 429–432
  2. F. Battistoni, L. Grenie, G. Molteni, “The first and second moment for the length of the period of the continued fraction expansion for $sqrt{d}$”, Mathematika, 70:4 (2024), e12273, 12 pp.
  3. A. M. Rockett, P. Szüsz, “On the lengths of the periods of the continued fractions of square-roots of integers”, Forum Math., 2:2 (1990), 119–123
  4. C. Hooley, “On the number of divisors of quadratic polynomials”, Acta Math., 110 (1963), 97–114
  5. D. I. Tolev, “On the exponential sum with square-free numbers”, Bull. London Math. Soc., 37:6 (2005), 827–834
  6. Н. М. Коробов, Тригонометрические суммы и их приложения, Наука, М., 1989, 240 с.
  7. S. Bettin, V. Chandee, “Trilinear forms with Kloosterman fractions”, Adv. Math., 328 (2018), 1234–1262

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Korolev M.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).