The split $5$-Casimir operator and the structure of $\wedge \mathfrak{ad}^{\otimes 5}$

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present paper, using the split Casimir operators,we find the decomposition of the antisymmetric part ofthe fifth power of the adjoint representation$\mathfrak{ad}^{\otimes 5}$. This decomposition contains, in addition to the representations that appearesin the decomposition of $\mathfrak{ad}^{\otimes 4}$, only one newrepresentation of $X_5$. The universal dimension of this representationfor exceptional Lie algebras was proposed in [1].Our decomposition holds for all Lie algebras.

About the authors

Aleksei Petrovich Isaev

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Region; Lomonosov Moscow State University, Faculty of Physics

Email: isaevap@theor.jinr.ru
Doctor of physico-mathematical sciences, Professor

Sergei Olegovich Krivonos

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Region; Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: isaevap@theor.jinr.ru

References

  1. A. J. Macfarlane, H. Pfeiffer, “Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator”, J. Phys. A, 36:9 (2003), 2305–2317
  2. A. M. Cohen, R. de Man, “Computational evidence for Deligne's conjecture regarding exceptional Lie groups”, C. R. Acad. Sci. Paris Ser. I Math., 322:5 (1996), 427–432
  3. J. M. Landsberg, L. Manivel, “A universal dimension formula for complex simple Lie algebras”, Adv. Math., 201:2 (2006), 379–407
  4. M. Avetisyan, A. P. Isaev, S. O. Krivonos, R. Mkrtchyan, “The uniform structure of $mathfrak g^{otimes 4}$”, Russ. J. Math. Phys., 31:3 (2024), 379–388
  5. P. Deligne, “La serie exceptionnelle de groupes de Lie”, C. R. Acad. Sci. Paris Ser. I Math., 322:4 (1996), 321–326
  6. P. Vogel, The universal Lie algebra, Ecole d'ete Grenoble, 1999, 20 pp.
  7. А. П. Исаев, А. А. Проворов, “Проекторы на инвариантные подпространства представлений $operatorname{ad}^{otimes 2}$ алгебр Ли $so(N)$ и $sp(2r)$ и параметризация Вожеля”, ТМФ, 206:1 (2021), 3–22
  8. A. P. Isaev, S. O. Krivonos, “Split Casimir operator for simple Lie algebras, solutions of Yang–Baxter equations, and Vogel parameters”, J. Math. Phys., 62:8 (2021), 083503, 33 pp.
  9. A. P. Isaev, S. O. Krivonos, A. A. Provorov, “Split Casimir operator for simple Lie algebras in the cube of $mathrm{ad}$-representation and Vogel parameters”, Internat. J. Modern Phys. A, 38:6-7 (2023), 2350037, 29 pp.
  10. A. P. Isaev, V. A. Rubakov, Theory of groups and symmetries. Finite groups, Lie groups, and Lie algebras, World Sci. Publ., Hackensack, NJ, 2018, xv+458 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Isaev A.P., Krivonos S.O.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).