Pfister forms and a conjecture due to Colliot–Thelène in the mixed characteristic case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $R$ be a regular local ring of mixed characteristic $(0,p)$, where $p\neq 2$ is a prime number.Suppose that the quotient ring $R/pR$ is also regular. We fix a non-degenerate Pfister form $Q(T_{1},\ldots,T_{2^{m}})$ over $R$and an invertible element $c$ in $R$. Then the equation $Q(T_{1},\ldots,T_{2^{m}})=c$ has a solution over $R$if and only if it has a solution over the fraction field $K$.

About the authors

Ivan Alexandrovich Panin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Email: paniniv@gmail.com
Doctor of physico-mathematical sciences

Dimitrii Nikolaevich Tyurin

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Leonard Euler International Mathematical Institute at Saint Petersburg (SPB LEIMI)

Scopus Author ID: 57196744354
without scientific degree

References

  1. K. Česnavičius, “Grothendieck–Serre in the quasi-split unramified case”, Forum Math. Pi, 10 (2022), e9, 30 pp.
  2. J.-L. Colliot-Thelène, “Formes quadratiques sur les anneaux semi-locaux reguliers”, Colloque sur les formes quadratiques, 2 (Montpellier, 1977), Bull. Soc. Math. France Mem., 59, 1979, 13–31
  3. M. Ojanguren, I. Panin, “Rationally trivial hermitian spaces are locally trivial”, Math. Z., 237:1 (2001), 181–198
  4. I. Panin, “Rationally isotropic quadratic spaces are locally isotropic”, Invent. Math., 176:2 (2009), 397–403
  5. I. Panin, Moving lemmas in mixed characteristic and applications
  6. I. Panin, On Grothendieck–Serre conjecture in mixed characteristic for $SL_{1,D}$
  7. I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. II”, Doc. Math., 2010, Extra vol.: A. A. Suslin's 60th birthday, 515–523
  8. I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, Алгебра и анализ, 27:6 (2015), 234–241
  9. S. Scully, “The Artin–Springer theorem for quadratic forms over semi-local rings with finite residue fields”, Proc. Amer. Math. Soc., 146:1 (2018), 1–13

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Панин И.A., Тюрин Д.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).