Asymptotic stability of solutions to quasilinear damped wave equations with variable sources

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we consider the following quasilinear damped hyperbolic equation involving variable exponents:$$u_{tt}-\operatorname{div}( |\nabla u|^{r(x)-2}\nabla u)+|u_t|^{m(x)-2} u_t-\Delta u_t=|u|^{q(x)-2}u,$$with homogenous Dirichlet initial boundary value condition. An energy estimate and Komornik's inequality are used to prove uniform estimate of decay rates of the solution. We also show that $u(x, t)=0$ is asymptotic stable in terms of natural energy associated with the solution of the above equation. As we know, such results are seldom seen for the variable exponent case. At last, we give some numerical examples to illustrate our results.Bibliography: 16 titles.

About the authors

Xiaoxin Yang

Changchun University of Science and Technology

Xiulan Wu

Changchun University of Science and Technology

Doctor of physico-mathematical sciences, Associate professor

Jiabao Zhuang

Changchun University of Science and Technology

References

  1. L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, x+509 pp.
  2. S. A. Messaoudi, A. A. Talahmeh, “On wave equation: review and recent results”, Arab. J. Math. (Springer), 7:2 (2018), 113–145
  3. S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Stud. Differ. Equ., 4, Atlantis Press, Paris, 2015, xviii+409 pp.
  4. Yunmei Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66:4 (2006), 1383–1406
  5. V. D. Rădulescu, D. D. Repovš, Partial differential equations with variable exponents. Variational methods and qualitative analysis, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015, xxi+301 pp.
  6. S. Antontsev, “Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up”, Differ. Equ. Appl., 3:4 (2011), 503–525
  7. S. Antontsev, J. Ferreira, “Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions”, Nonlinear Anal., 93 (2013), 62–77
  8. G. Autuori, P. Pucci, M. C. Salvatori, “Global nonexistence for nonlinear Kirchhoff systems”, Arch. Ration. Mech. Anal., 196:2 (2010), 489–516
  9. Bin Guo, Wenjie Gao, “Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian and positive initial energy”, C. R. Mecanique, 342:9 (2014), 513–519
  10. S. A. Messaoudi, A. A. Talahmeh, “A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities”, Appl. Anal., 96:9 (2017), 1509–1515
  11. S. A. Messaoudi, A. A. Talahmeh, “Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities”, Math. Methods Appl. Sci., 40:18 (2017), 6976–6986
  12. S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, “Nonlinear damped wave equation: existence and blow-up”, Comput. Math. Appl., 74:12 (2017), 3024–3041
  13. S. A. Messaoudi, J. H. Al-Smail, A. A. Talahmeh, “Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities”, Comput. Math. Appl., 76:8 (2018), 1863-1875
  14. Xiaolei Li, Bin Guo, Menglan Liao, “Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources”, Comput. Math. Appl., 79:4 (2020), 1012–1022
  15. V. Komornik, Exact controllability and stabilization. The multiplier method, RAM Res. Appl. Math., Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994, viii+156 pp.
  16. J. Haehnle, A. Prohl, “Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions”, Math. Comp., 79:269 (2010), 189–208

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Yang X., Wu X., Zhuang J.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).