Criterion for the existence of a connected characteristic space of orbits in a gradient-like diffeomorphism of a surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The classical approach to the study of dynamical systems consistsin representing the dynamics of the system in the “source–sink” form,that is, by singling out a dual attractor–repeller pair, consisting ofthe attracting and repelling sets for all other trajectoriesof the system. A choice of an attractor-repeller dual pairso that the space of orbits in their complement (the characteristic spaceof orbits) is connected paves the way for finding completetopological invariants of the dynamical system. In this way, in particular,several classification results for Morse–Smale systems were obtained.Thus, a complete topological classification of Morse–Smale3-diffeomorphisms is essentially based on the existence of a connectedcharacteristic space of orbits associated with the choice ofa one-dimensional dual attractor–repeller pair.For Morse–Smale diffeomorphisms with heteroclinic points on surfaces,there are examples in which the characteristic spaces of orbits are disconnected in all cases.In this paper, we prove a criterion for the existence of a connectedcharacteristic space of orbits for gradient-like (without heteroclinicpoints) diffeomorphisms on surfaces. This result implies, in particular,that any orientation-preserving diffeomorphism admits a connectedcharacteristic space. For an orientable surface of any kind,we also construct an orientation-changing gradient-like diffeomorphism that does not havea connected characteristic space. On any non-orientable surface of any kind, we also constructa gradient-like diffeomorphism which does not admit a connected characteristic space.

About the authors

Elena Vyacheslavovna Nozdrinova

National Research University – Higher School of Economics in Nizhny Novgorod

ORCID iD: 0000-0001-5209-377X
Candidate of physico-mathematical sciences, no status

Olga Vital'evna Pochinka

National Research University – Higher School of Economics in Nizhny Novgorod

Email: olga-pochinka@yandex.ru
ORCID iD: 0000-0002-6587-5305
Doctor of physico-mathematical sciences, no status

Ekaterina Vadimovna Tsaplina

National Research University – Higher School of Economics in Nizhny Novgorod

References

  1. В. З. Гринес, Е. В. Жужома, В. С. Медведев, О. В. Починка, “Глобальные аттрактор и репеллер диффеоморфизмов Морса–Смейла”, Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 271, МАИК «Наука/Интерпериодика», М., 2010, 111–133
  2. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp.
  3. C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
  4. C. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391
  5. V. Z. Grines, E. A. Gurevich, O. V. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic intersections”, J. Math. Sci. (N.Y.), 208:1 (2015), 81–90
  6. V. Grines, E. Gurevich, O. Pochinka, D. Malyshev, “On topological classification of Morse–Smale diffeomorphisms on the sphere $S^n$ ($n>3$)”, Nonlinearity, 33:12 (2020), 7088–7113
  7. D. Malyshev, A. Morozov, O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119, 17 pp.
  8. В. З. Гринес, Е. Я. Гуревич, Е. В. Жужома, О. В. Починка, “Классификация систем Морса–Смейла и топологическая структура несущих многообразий”, УМН, 74:1(445) (2019), 41–116
  9. Е. В. Ноздринова, “Существование связного характеристического пространства у градиентно-подобных диффеоморфизмов поверхностей”, Журнал СВМО, 19:2 (2017), 91–97
  10. Ж. Палис, В. ди Мелу, Геометрическая теория динамических систем. Введение, Мир, М., 1986, 302 с.
  11. Ч. Косневски, Начальный курс алгебраической топологии, Мир, М., 1983, 304 с.
  12. В. З. Гринес, С. Х. Капкаева, О. В. Починка, “Трехцветный граф как полный топологический инвариант для градиентно-подобных диффеоморфизмов поверхностей”, Матем. сб., 205:10 (2014), 19–46
  13. D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
  14. D. Rolfsen, Knots and links, AMS Chelsea Publ. Ser., 346, Reprint with corr. of the 1976 original, Amer. Math. Soc., Providence, RI, 2003, ix+439 pp.

Copyright (c) 2024 Ноздринова Е.V., Починка О.V., Цаплина Е.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies