On rotation invariant integrable systems
- Authors: Tsiganov A.V.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 88, No 2 (2024)
- Pages: 206-226
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/254269
- DOI: https://doi.org/10.4213/im9506
- ID: 254269
Cite item
Abstract
The problem of finding the first integrals of the Newton equations inthe $n$-dimensional Euclidean space is reduced to that of findingtwo integrals of motion on the Lie algebra $\mathrm{so}(4)$which are invariant under $m\geqslant n-2$ rotation symmetry fields.As an example, we obtainseveral families of integrable and superintegrable systems with first,second, and fourth-degree integrals of motion in the momenta.The corresponding Hamilton–Jacobi equationdoes not admit separation variables in any of the known curvilinear orthogonal coordinate systemsin the Euclidean space.
About the authors
Andrey Vladimirovich Tsiganov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: a.tsyganov@spbu.ru
ORCID iD: 0000-0001-7228-9593
SPIN-code: 3084-6239
Scopus Author ID: 7003435326
ResearcherId: B-4674-2011
Doctor of physico-mathematical sciences, Associate professor
References
- В. В. Козлов, “Интегрируемость и неинтегрируемость в гамильтоновой механике”, УМН, 38:1(229) (1983), 3–67
- В. В. Козлов, “Тензорные инварианты и интегрирование дифференциальных уравнений”, УМН, 74:1(445) (2019), 117–148
- В. В. Козлов, “Квадратичные законы сохранения уравнений математической физики”, УМН, 75:3(453) (2020), 55–106
- J. Drach, “Sur l'integration logique des equations de la dynamique à deux variables. Forces conservatives. Integrales cubiques. Mouvements dans le plan”, C. R. Acad. Sci. Paris, 200 (1935), 22–26
- J. Hietarinta, “Direct methods for the search of the second invariant”, Phys. Rep., 147:2 (1987), 87–154
- H. Yoshida, “Necessary condition for the existence of algebraic first integrals. II. Condition for algebraic integrability”, Celestial Mech., 31:4 (1983), 381–399
- B. Dorizzi, B. Grammaticos, J. Hietarinta, A. Ramani, F. Schwarz, “New integrable three-dimensional quartic potentials”, Phys. Lett. A, 116:9 (1986), 432–436
- J. J. Morales-Ruiz, J.-P. Ramis, “Integrability of dynamical systems through differential Galois theory: a practical guide”, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010, 143–220
- Н. Х. Ибрагимов, Группы преобразований в математической физике, Наука, М., 1983, 280 с.
- J. A. Schouten, Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Grundlehren Math. Wiss., 10, 2nd ed., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954, xx+516 pp.
- M. Crampin, “Hidden symmetries and Killing tensors”, Rep. Math. Phys., 20:1 (1984), 31–40
- P. Stäckel, Über die Integration der Hamilton–Jacobischen-Differentialgleichung mittels Separation der Variabeln, Habil.-Schr., Vereinigten Friedrichs–Univ. Halle–Wittenberg, Halle, 1891, 26 pp.
- F. Magri, P. Casati, G. Falqui, M. Pedroni, “Eight lectures on integrable systems”, Integrability of nonlinear systems (Pondicherry, 1996), Lecture Notes in Phys., 638, 2nd rev. ed., Springer-Verlag, Berlin, 2004, 209–250
- A. J. Maciejewski, M. Przybylska, A. V. Tsiganov, “On algebraic construction of certain integrable and super-integrable systems”, Phys. D, 240:18 (2011), 1426–1448
- A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Comm. Math. Phys., 89:3 (1983), 427–443
- A. Fordy, S. Woiciechowski, I. Marshall, “A family of integrable quartic potentials related to symmetric spaces”, Phys. Lett. A, 113:8 (1986), 395–400
- A. P. Fordy, Qing Huang, “Stationary flows revisited”, SIGMA, 19 (2023), 015, 34 pp.
- А. Г. Рейман, М. А. Семенов-тян-Шанский, Интегрируемые системы, Ин-т компьютерных исследований, М.–Ижевск, 2003, 352 с.
- A. V. Tsiganov, “On maximally superintegrable systems”, Regul. Chaotic Dyn., 13:3 (2008), 178–190
- W. Miller, Jr., S. Post, P. Winternitz, “Classical and quantum superintegrability with applications”, J. Phys. A, 46:42 (2013), 423001
- A. V. Tsiganov, “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaotic Dyn., 14:3 (2009), 389–406
- A. V. Tsiganov, “Elliptic curve arithmetic and superintegrable systems”, Phys. Scr., 94:8 (2019), 085207
- A. V. Tsiganov, “Addition theorems and the Drach superintegrable systems”, J. Phys. A, 41:33 (2008), 335204, 16 pp.
- Yu. A. Grigoriev, A. V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Phys. Lett. A, 382:32 (2018), 2092–2096
- A. V. Tsiganov, “Superintegrable systems and Riemann–Roch theorem”, J. Math. Phys., 61:1 (2020), 012701, 14 pp.
- M. Karlovini, K. Rosquist, “A unified treatment of cubic invariants at fixed and arbitrary energy”, J. Math. Phys., 41:1 (2000), 370–384
- V. B. Kuznetsov, “Quadrics on real Riemannian spaces of constant curvature: Separation of variables and connection with Gaudin magnet”, J. Math. Phys., 33:9 (1992), 3240–3254
- E. G. Kalnins, V. B. Kuznetsov, W. Miller, Jr., “Quadrics on complex Riemannian spaces of constant curvature, separation of variables, and the Gaudin magnet”, J. Math. Phys., 35:4 (1994), 1710–1731
- А. В. Цыганов, Е. О. Порубов, “Об одном классе квадратичных законов сохранения для уравнений Ньютона в евклидовом пространстве”, ТМФ, 216:2 (2023), 350–382
- A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475
- А. В. Цыганов, “О двух интегрируемых системах с интегралами движения четвертой степени”, ТМФ, 186:3 (2016), 443–455
- A. V. Tsiganov, “On integrable systems outside Nijenhuis and Haantjes geometry”, J. Geom. Phys., 178 (2022), 104571, 12 pp.
- А. В. Цыганов, “О тензорах Киллинга в трехмерном eвклидовом пространстве”, ТМФ, 212:1 (2022), 149–164
Supplementary files
