Алгоритмическая сложность теорий коммутативных алгебр Клини
- Авторы: Кузнецов С.Л.1
-
Учреждения:
- Математический институт им. В.А. Стеклова Российской академии наук
- Выпуск: Том 88, № 2 (2024)
- Страницы: 44-79
- Раздел: Статьи
- URL: https://journals.rcsi.science/1607-0046/article/view/254263
- DOI: https://doi.org/10.4213/im9480
- ID: 254263
Цитировать
Аннотация
Ключевые слова
Об авторах
Степан Львович Кузнецов
Математический институт им. В.А. Стеклова Российской академии наук
ORCID iD: 0000-0003-0025-0133
Scopus Author ID: 54914981600
ResearcherId: P-2607-2016
кандидат физико-математических наук, без звания
Список литературы
- С. К. Клини, “Представление событий в нервных сетях и конечных автоматах”, Автоматы, Сб. ст., ИЛ, М., 1956, 15–67
- D. Kozen, “On Kleene algebras and closed semirings”, Mathematical foundations of computer science (Banska Bystrica, 1990), Lecture Notes in Comput. Sci., 452, Springer-Verlag, Berlin, 1990, 26–47
- V. Pratt, “Action logic and pure induction”, Logics in AI (Amsterdam, 1990), Lecture Notes in Comput. Sci., 478, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin, 1991, 97–120
- В. Н. Редько, “Об алгебре коммутативных событий”, Укр. матем. журн., 16:2 (1964), 185–195
- R. J. Parikh, “On context-free languages”, J. Assoc. Comput. Mach., 13:4 (1966), 570–581
- D. Kozen, “On the complexity of reasoning in Kleene algebra”, Inform. and Comput., 179:2 (2002), 152–162
- S. L. Kuznetsov, “On the complexity of reasoning in Kleene algebra with commutativity conditions”, Theoretical aspects of computing – ICTAC 2023 (Lima, 2023), Lecture Notes in Comput. Sci., 14446, Springer, Cham, 2023, 83–99
- S. L. Kuznetsov, “Reasoning in commutative Kleene algebras from $*$-free hypotheses”, The Logica yearbook 2021, College Publications, London, 2022, 99–113
- E. Palka, “An infinitary sequent system for the equational theory of $*$-continuous action lattices”, Fund. Inform., 78:2 (2007), 295–309
- W. Buszkowski, E. Palka, “Infinitary action logic: complexity, models and grammars”, Studia Logica, 89:1 (2008), 1–18
- J.-Y. Girard, “Linear logic”, Theoret. Comput. Sci., 50:1 (1987), 1–101
- S. L. Kuznetsov, S. O. Speranski, “Infinitary action logic with exponentiation”, Ann. Pure Appl. Logic, 173:2 (2022), 103057, 29 pp.
- S. L. Kuznetsov, S. O. Speranski, “Infinitary action logic with multiplexing”, Studia Logica, 111:2 (2023), 251–280
- P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar, “Decision problems for propositional linear logic”, Ann. Pure Appl. Logic, 56:1-3 (1992), 239–311
- S. L. Kuznetsov, “Kleene star, subexponentials without contraction, and infinite computations”, Сиб. электрон. матем. изв., 18:2 (2021), 905–922
- V. Danos, J.-B. Joinet, H. Schellinx, “The structure of exponentials: uncovering the dynamics of linear logic proofs”, Computational logic and proof theory (Brno, 1993), Lecture Notes in Comput. Sci., 713, Springer-Verlag, Berlin, 1993, 159–171
- M. L. Minsky, “Recursive unsolvability of Post's problem of “tag” and other topics in theory of Turing machines”, Ann. of Math. (2), 74:3 (1961), 437–455
- S. L. Kuznetsov, “Commutative action logic”, J. Logic Comput., 33:6 (2023), 1437–1462
- L. Strassburger, “On the decision problem for MELL”, Theor. Comput. Sci., 768 (2019), 91–98
- R. Schroeppel, A two counter machine cannot calculate $2^N$, Report no. AIM-257, MIT, Cambrigde, MA, 1972, 32 pp.
- E. Börger, Computability, complexity, logic, Stud. Logic Found. Math., 128, North-Holland Publishing Co., Amsterdam, 1989, xx+592 pp.
- S. C. Kleene, “Arithmetical predicates and function quantifiers”, Trans. Amer. Math. Soc., 79 (1955), 312–340
- C. Spector, “Recursive well-orderings”, J. Symb. Log., 20:2 (1955), 151–163
- P. Odifreddi, Classical recursion theory. The theory of functions and sets of natural numbers, Stud. Logic Found. Math., 125, North-Holland Publishing Co., Amsterdam, 1989, xviii+668 pp.
Дополнительные файлы
