Interpolating asymptotic integration methodsfor second-order differential equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of asymptotic behaviour at infinity of solutionsto second-order differential equation can be reduced via the Liouville transformto that ofan equation with almost constant coefficients. In the present paper,we compare various methods of asymptotic integration in application tothe reduced equation $u"-(\lambda^2+\varphi(t))u=0$ and interpolatethe corresponding results in the case $\operatorname{Re}\lambda>0$,provided that a complex-valued function $\varphi(t)$ is in a certain sense smallfor large values of the argument.

About the authors

Stanislav Anatol'evich Stepin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Email: astepina@inbox.ru

References

  1. М. В. Федорюк, Асимптотические методы для линейных обыкновенных дифференциальных уравнений, Наука, М., 1983, 352 с.
  2. Дж. Хединг, Введение в метод фазовых интегралов (метод ВКБ), Мир, М., 1965, 237 с.
  3. С. А. Степин, “Метод ВКБ и дихотомия для обыкновенных дифференциальных уравнений”, Докл. РАН, 404:6 (2005), 749–752
  4. Р. Беллман, Теория устойчивости решений дифференциальных уравнений, ИЛ, М., 1954, 216 с.
  5. Ф. Хартман, Обыкновенные дифференциальные уравнения, Мир, М., 1970, 720 с.
  6. W. A. Harris, Jr., D. A. Lutz, “A unified theory of asymptotic integration”, J. Math. Anal. Appl., 57:3 (1977), 571–586
  7. W. F. Trench, “Linear perturbations of a nonoscillatory second order equation”, Proc. Amer. Math. Soc., 97:3 (1986), 423–428
  8. J. Šimša, “Asymptotic integration of a second order ordinary differential equation”, Proc. Amer. Math. Soc., 101:1 (1987), 96–100
  9. Shao Zhu Chen, “Asymptotic integrations of nonoscillatory second order ordinary differential equations”, Trans. Amer. Math. Soc., 327:2 (1991), 853–865
  10. S. Bodine, D. A. Lutz, “Asymptotic integration of nonoscillatory differential equations: a unified approach”, J. Dyn. Control Syst., 17:3 (2011), 329–358
  11. С. А. Степин, “Интерполяция в асимптотическом интегрировании неосцилляционных дифференциальных уравнений”, Докл. РАН, 443:1 (2012), 22–25
  12. В. В. Немыцкий, В. В. Степанов, Качественная теория дифференциальных уравнений, 2-е изд., ГИТТЛ, М.–Л., 1949, 545 с.
  13. Л. А. Люстерник, В. И. Соболев, Элементы функционального анализа, 2-е изд., Наука, М., 1965, 520 с.
  14. С. А. Степин, “Асимптотическое интегрирование неосцилляционных дифференциальных уравнений второго порядка”, Докл. РАН, 434:3 (2010), 315–318
  15. S. Bodine, D. A. Lutz, “Asymptotic solutions and error estimates for linear systems of difference and differential equations”, J. Math. Anal. Appl., 290:1 (2004), 343–362

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Степин С.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).