Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we investigate the ground states for the fractional Choquard equations with doubly critical exponents and magnetic fields. We prove that the equation has a ground state solution by using the Nehari method and the Pokhozhaev identity.

About the authors

Zhenyu Guo

Liaoning Normal University

Email: guozy@163.com

Doctor of physico-mathematical sciences, Associate professor

Lujuan Zhao

Beijing Normal University

Author for correspondence.
Email: zhao_lujuan@163.com

References

  1. P. d'Avenia, M. Squassina, “Ground states for fractional magnetic operators”, ESAIM Control Optim. Calc. Var., 24:1 (2018), 1–24
  2. T. Ichinose, H. Tamura, “Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field”, Comm. Math. Phys., 105:2 (1986), 239–257
  3. Li Ma, Lin Zhao, “Classification of positive solitary solutions of the nonlinear Choquard equation”, Arch. Ration. Mech. Anal., 195:2 (2010), 455–467
  4. V. Moroz, J. Van Schaftingen, “Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics”, J. Funct. Anal., 265:2 (2013), 153–184
  5. P. d'Avenia, G. Siciliano, M. Squassina, “On fractional Choquard equations”, Math. Models Methods Appl. Sci., 25:8 (2015), 1447–1476
  6. Jinmyoung Seok, “Nonlinear Choquard equations: doubly critical case”, Appl. Math. Lett., 76 (2018), 148–156
  7. Yu Su, Li Wang, Haibo Chen, Senli Liu, “Multiplicity and concentration results for fractional Choquard equations: doubly critical case”, Nonlinear Anal., 198 (2020), 111872, 37 pp.
  8. Chun-Yu Lei, Binlin Zhang, “Ground state solutions for nonlinear Choquard equations with doubly critical exponents”, Appl. Math. Lett., 125 (2022), 107715, 7 pp.
  9. Э. Либ, М. Лосс, Анализ, Науч. кн., Новосибирск, 1998, 276 с.
  10. Zifei Shen, Fashun Gao, Minbo Yang, Groundstates for nonlinear fractional Choquard equations with general nonlinearities, 2014
  11. A. Szulkin, T. Weth, “The method of Nehari manifold”, Handbook of nonconvex analysis and applications, Int. Press, Somerville, MA, 2010, 597–632
  12. M. Willem, Minimax theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser Boston, Inc., Boston, MA, 1996, x+162 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Guo Z., Zhao L.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).