On the standard conjecture for projective compactifications of Neron models of $3$-dimensionalAbelian varieties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove that the Grothendieck standard conjecture of Lefschetz type holdsfor a smooth complex projective $4$-dimensional variety $X$fibred by Abelian varieties (possibly, with degeneracies)over a smooth projective curve if the endomorphism ring $\operatorname{End}_{\overline{\kappa(\eta)}} (X_\eta\otimes_{\kappa(\eta)}\overline{\kappa(\eta)})$ of the genericgeometric fibre is not an orderof an imaginary quadratic field. This conditionholds automatically in the cases when the reduction of the generic scheme fibre $X_\eta$ at someplace of the curve is semistable in the sense of Grothendieck and hasodd toric rank or the generic geometric fibre is not a simple Abelian variety.

About the authors

Sergey Gennadievich Tankeev

Vladimir State University

Email: tankeev@vlsu.ru
Doctor of physico-mathematical sciences, Professor

References

  1. A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. colloq. (Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 193–199
  2. S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposes sur la cohomologie des schemas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 359–386
  3. С. Г. Танкеев, “О стандартной гипотезе для комплексных абелевых схем над гладкими проективными кривыми”, Изв. РАН. Сер. матем., 67:3 (2003), 183–224
  4. С. Г. Танкеев, “О численной эквивалентности алгебраических циклов на потенциально простых абелевых схемах простой относительной размерности”, Изв. РАН. Сер. матем., 69:1 (2005), 145–164
  5. С. Г. Танкеев, “Моноидальные преобразования и гипотезы об алгебраических циклах”, Изв. РАН. Сер. матем., 71:3 (2007), 197–224
  6. D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374
  7. С. Г. Танкеев, “О стандартной гипотезе типа Лефшеца для комплексных проективных трехмерных многообразий. II”, Изв. РАН. Сер. матем., 75:5 (2011), 177–194
  8. D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781
  9. F. Charles, E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494
  10. О. В. Никольская, “Об алгебраических циклах на расслоенном произведении семейств $K3$-поверхностей”, Изв. РАН. Сер. матем., 77:1 (2013), 145–164
  11. О. В. Никольская, “Об алгебраических циклах на расслоенных произведениях неизотривиальных семейств регулярных поверхностей с геометрическим родом 1”, Модел. и анализ информ. систем, 23:4 (2016), 440–465
  12. С. Г. Танкеев, “О стандартной гипотезе и существовании разложения Чжоу–Лефшеца для комплексных проективных многообразий”, Изв. РАН. Сер. матем., 79:1 (2015), 185–216
  13. С. Г. Танкеев, “Об индуктивном подходе к стандартной гипотезе для расслоенного комплексного многообразия с сильными полустабильными вырождениями”, Изв. РАН. Сер. матем., 81:6 (2017), 199–231
  14. С. Г. Танкеев, “О стандартной гипотезе для расслоенного произведения трех эллиптических поверхностей с попарно непересекающимися дискриминантными локусами”, Изв. РАН. Сер. матем., 83:3 (2019), 213–256
  15. С. Г. Танкеев, “О стандартной гипотезе для расслоенного на кривые $3$-мерного многообразия с неинъективным отображением Кодаиры–Спенсера”, Изв. РАН. Сер. матем., 84:5 (2020), 211–232
  16. A. Grothendieck, “Modèles de Neron et monodromie”, Groupes de monodromie en geometrie algebrique, Seminaire de geometrie algebrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math., 288, Springer-Verlag, Berlin–New York, 1972, Exp. No. IX, 313–523
  17. K. Künnemann, “Height pairings for algebraic cycles on abelian varieties”, Ann. Sci. Ecole Norm. Sup. (4), 34:4 (2001), 503–523
  18. K. Künnemann, “Projective regular models for abelian varieties, semistable reduction, and the height pairing”, Duke Math. J., 95:1 (1998), 161–212
  19. П. Делинь, “Теория Ходжа. II”, Математика. Сб. пер., 17, № 5, Мир, М., 1973, 3–56
  20. B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”, Appendix in:: J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, 297–356
  21. Н. Бурбаки, Группы и алгебры Ли, гл. 1–3, Элементы математики, Мир, М., 1976, 496 с.
  22. Н. Бурбаки, Алгебра: модули, кольца, формы, Наука, М., 1966, 555 с.
  23. P. Deligne, “Theorie de Hodge. III”, Inst. Hautes Etudes Sci. Publ. Math., 44 (1974), 5–77
  24. S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincare metric”, Ann. of Math. (2), 109:3 (1979), 415–476
  25. C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290
  26. Ю. Г. Зархин, “Веса простых алгебр Ли в когомологиях алгебраических многообразий”, Изв. АН СССР. Сер. матем., 48:2 (1984), 264–304
  27. D. Mumford, “A note on Shimura's paper “Discontinuous groups and Abelian varieties””, Math. Ann., 181:4 (1969), 345–351
  28. B. J. J. Moonen, Yu. G. Zarhin, “Hodge classes on abelian varieties of low dimension”, Math. Ann., 315:4 (1999), 711–733
  29. O. V. Oreshkina, On the Hodge group and invariant cycles of a simple Abelian variety with a stable reduction of odd toric rank, 2018
  30. Р. Годеман, Алгебраическая топология и теория пучков, ИЛ, М., 1961, 319 с.
  31. Э. Спеньер, Алгебраическая топология, Мир, М., 1971, 680 с.
  32. Вик. С. Куликов, П. Ф. Курчанов, “Комплексные алгебраические многообразия: периоды интегралов, структуры Ходжа”, Алгебраическая геометрия – 3, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 36, ВИНИТИ, М., 1989, 5–231
  33. Дж. Милн, Этальные когомологии, Мир, М., 1983, 392 с.
  34. C. Voisin, Hodge theory and complex algebraic geometry, Transl. from the French, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002, x+322 pp.
  35. S. Lang, Abelian varieties, Reprint of the 1959 original, v. I, II, Springer-Verlag, New York–Berlin, 1983, xii+256 pp.
  36. Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982, 864 с.
  37. J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, xvi+368 pp.
  38. D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, “Torification and factorization of birational maps”, J. Amer. Math. Soc., 15:3 (2002), 531–572
  39. Н. Бурбаки, Алгебра. Гл. X. Гомологическая алгебра, Элементы математики, Наука, М., 1987, 183 с.
  40. W. Fulton, Equivariant cohomology in algebraic geometry. Appendix A. Algebraic topology, Eilenberg lectures, notes by D. Anderson (Columbia Univ., 2007), 2007, 13 pp.
  41. Bong H. Lian, A. Todorov, Shing-Tung Yau, “Maximal unipotent monodromy for complete intersection CY manifolds”, Amer. J. Math., 127:1 (2005), 1–50
  42. Д. Мамфорд, Лекции о кривых на алгебраической поверхности, Мир, М., 1968, 236 с.
  43. Ю. И. Манин, Кубические формы, Наука, М., 1972, 304 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Танкеев С.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).