On distributions of homogeneous and convex functions in Gaussian random variables
- 作者: Bogachev V.I.1,2, Kosov E.D.1,2, Popova S.N.3,2
-
隶属关系:
- Lomonosov Moscow State University
- HSE University
- Moscow Institute of Physics and Technology (National Research University)
- 期: 卷 85, 编号 5 (2021)
- 页面: 25-57
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/142271
- DOI: https://doi.org/10.4213/im9075
- ID: 142271
如何引用文章
详细
作者简介
Vladimir Bogachev
Lomonosov Moscow State University; HSE University
Email: vibogach@mail.ru
Doctor of physico-mathematical sciences, Professor
Egor Kosov
Lomonosov Moscow State University; HSE University
Email: ked_2006@mail.ru
Doctor of physico-mathematical sciences, no status
Svetlana Popova
Moscow Institute of Physics and Technology (National Research University); HSE UniversityCandidate of physico-mathematical sciences, no status
参考
- R. J. Adler, “On excursion sets, tube formulas and maxima of random fields”, Ann. Appl. Probab., 10:1 (2000), 1–74
- Л. М. Арутюнян, И. С. Ярославцев, “Об измеримых многочленах на бесконечномерных пространствах”, Докл. РАН, 449:6 (2013), 627–631
- V. Bally, L. Caramellino, “Convergence and regularity of probability laws by using an interpolation method”, Ann. Probab., 45:2 (2017), 1110–1159
- V. Bentkus, F. Götze, “Optimal rates of convergence in the CLT for quadratic forms”, Ann. Probab., 24:1 (1996), 466–490
- В. И. Богачев, “Функционалы от случайных процессов и связанные с ними бесконечномерные осциллирующие интегралы”, Изв. РАН. Сер. матем., 56:2 (1992), 243–278
- В. И. Богачев, Гауссовские меры, Наука, М., 1997, 352 с.
- В. И. Богачев, Дифференцируемые меры и исчисление Маллявэна, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2008, 544 с.
- V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and stochastic analysis. Current trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83
- В. И. Богачев, “Распределения многочленов на многомерных и бесконечномерных пространствах с мерами”, УМН, 71:4(430) (2016), 107–154
- V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp.
- V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432
- В. И. Богачев, О. Г. Смолянов, “Аналитические свойства бесконечномерных вероятностных распределений”, УМН, 45:3(273) (1990), 3–83
- В. И. Богачев, О. Г. Смолянов, В. И. Соболев, Топологические векторные пространства и их приложения, РХД, М.–Ижевск, 2012, 584 с.
- V. Chernozhukov, D. Chetverikov, K. Kato, “Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors”, Ann. Statist., 41:6 (2013), 2786–2819
- V. Chernozhukov, D. Chetverikov, K. Kato, “Comparison and anti-concentration bounds for maxima of Gaussian random vectors”, Probab. Theory Related Fields, 162:1-2 (2015), 47–70
- Ю. А. Давыдов, М. А. Лифшиц, Н. В. Смородина, Локальные свойства распределений стохастических функционалов, Наука, М., 1995, 256 с.
- W. F. Donoghue, Jr., Distributions and Fourier transforms, Pure Appl. Math., 32, Academic Press, New York, 1969, viii+315 pp.
- F. Götze, A. N. Tikhomirov, “Asymptotic distribution of quadratic forms”, Ann. Probab., 27:2 (1999), 1072–1098
- F. Götze, A. Tikhomirov, “Asymptotic distribution of quadratic forms and applications”, J. Theoret. Probab., 15:2 (2002), 423–475
- F. Götze, A. N. Tikhomirov, “Asymptotic expansions in non-central limit theorems for quadratic forms”, J. Theoret. Probab., 18:4 (2005), 757–811
- F. Götze, A. Yu. Zaitsev, “Explicit rates of approximation in the CLT for quadratic forms”, Ann. Probab., 42:1 (2014), 354–397
- Y. Koike, “Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data”, Ann. Statist., 47:3 (2019), 1663–1687
- S. Kuriki, A. Takemura, “Tail probabilities of the maxima of multilinear forms and their applications”, Ann. Statist., 29:2 (2001), 328–371
- М. А. Лифшиц, Гауссовские случайные функции, ТВиМС, Киев, 1995, 246 с.
- I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus. From Stein's method to universality, Cambridge Tracts in Math., 192, Cambridge Univ. Press, Cambridge, 2012, xiv+239 pp.
- D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1995, xii+266 pp.
- F. G. Tricomi, “Asymptotische Eigenschaften der unvollständigen Gammafunktion”, Math. Z., 53 (1950), 136–148
- F. G. Viens, A. B. Vizcarra, “Supremum concentration inequality and modulus of continuity for sub-$n$th chaos processes”, J. Funct. Anal., 248:1 (2007), 1–26
- WanSoo T. Rhee, “On the distribution of the norm for a Gaussian measure”, Ann. Inst. H. Poincare Probab. Statist., 20:3 (1984), 277–286
- WanSoo Rhee, M. Talagrand, “Bad rates of convergence for the central limit theorem in Hilbert space”, Ann. Probab., 12:3 (1984), 843–850
- WanSoo Rhee, M. Talagrand, “Uniform convexity and the distribution of the norm for a Gaussian measure”, Probab. Theory Relat. Fields, 71:1 (1986), 59–67
- A. W. Roberts, D. E. Varberg, Convex functions, Pure Appl. Math., 57, Academic Press, New York–London, 1973, xx+300 pp.
- Н. В. Смородина, “Асимпотическое разложение распределения однородного фунцкионала от строго устойчивого вектора”, Теория вероятн. и ее примен., 41:1 (1996), 133–163
补充文件
