Minimal supplements of maximal tori in their normalizers for the groups $F_4(q)$
- Authors: Galt A.A.1,2, Staroletov A.M.1,2
-
Affiliations:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 86, No 1 (2022)
- Pages: 134-159
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/142267
- DOI: https://doi.org/10.4213/im9083
- ID: 142267
Cite item
Abstract
About the authors
Alexey Albertovich Galt
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: galt84@gmail.com
Candidate of physico-mathematical sciences, Researcher
Alexey Mikhailovich Staroletov
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: staroletov@math.nsc.ru
Candidate of physico-mathematical sciences, no status
References
- J. Tits, “Normalisateurs de tores. I. Groupes de coxeter etendus”, J. Algebra, 4 (1966), 96–116
- J. Adams, Xuhua He, “Lifting of elements of Weyl groups”, J. Algebra, 485 (2017), 142–165
- А. А. Гальт, “О расщепляемости нормализатора максимального тора в исключительных линейных алгебраических группах”, Изв. РАН. Сер. матем., 81:2 (2017), 35–52
- A. Galt, “On splitting of the normalizer of a maximal torus in orthogonal groups”, J. Algebra Appl., 16:9 (2017), 1750174, 23 pp.
- A. Galt, “On splitting of the normalizer of a maximal torus in linear groups”, J. Algebra Appl., 14:7 (2015), 1550114, 20 pp.
- А. А. Гальт, “О расщепляемости нормализатора максимального тора в симплектических группах”, Изв. РАН. Сер. матем., 78:3 (2014), 19–34
- M. Curtis, A. Wiederhold, B. Williams, “Normalizers of maximal tori”, Localization in group theory and homotopy theory, and related topics (Battelle Seattle Res. Center, Seattle, WA, 1974), Lecture Notes in Math., 418, Springer, Berlin, 1974, 31–47
- A. Galt, A. Staroletov, “On splitting of the normalizer of a maximal torus in $E_6(q)$”, Algebra Colloq., 26:2 (2019), 329–350
- А. А. Гальт, А. М. Старолетов, “О расщепляемости нормализаторов максимальных торов в группах $E_7(q)$ и $E_8(q)$”, Матем. тр., 24:1 (2021), 52–101
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985, xxxiv+252 pp.
- R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley & Sons, London–New York–Sydney, 1972, viii+331 pp.
- R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure Appl. Math., John Wiley & Sons, Inc., New York, 1985, xii+544 pp.
- А. А. Бутурлакин, М. А. Гречкосеева, “Циклическое строение максимальных торов в конечных классических группах”, Алгебра и логика, 46:2 (2007), 129–156
- W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I. The user language”, J. Symbolic Comput., 24:3-4 (1997), 235–265
- GAP – Groups, Algorithms, Programming – a system for computational discrete algebra, Version 4.10.1, 2019
- Н. Бурбаки, Группы и алгебры Ли, Гл. IV–VI. Группы Кокстера и системы Титса. Группы, порожденные отражениями. Системы корней, Элементы математики, Мир, М., 1972, 334 с.
- K. Shinoda, “The conjugacy classes of Chevalley groups of type $(F_4)$ over finite fields of characteristic $2$”, J. Fac. Sci. Univ. Tokyo Sect. I A Math., 21 (1974), 133–159
- R. Lawther, “The action of $F_4(q)$ on cosets of $B_4(q)$”, J. Algebra, 212:1 (1999), 79–118
Supplementary files
