The coloured Tverberg theorem, extensions and new results

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove a multiple coloured Tverberg theorem and a balanced coloured Tverbergtheorem, applying different methods, tools and ideas. The proof of the first theorem uses a multiplechessboard complex (as configuration space) and the Eilenberg–Krasnoselskii theory ofdegrees of equivariant maps for non-free group actions. The proof of the second result relies onthe high connectivity of the configuration space, established by using discrete Morse theory.

Full Text

Restricted Access

About the authors

Duško Joji´c

University of Banja Luka

Email: ducci68@blic.net

Gaiane Yur'evna Panina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Saint Petersburg State University

Email: gaiane-panina@rambler.ru
Doctor of physico-mathematical sciences, no status

Rade T. Živaljević

Mathematical Institute, Serbian Academy of Sciences and Arts

References

  1. J. Matoušek, Using the Borsuk–Ulam theorem, Lectures on topological methods in combinatorics and geometry, Universitext, Springer-Verlag, Berlin, 2003, xii+196 pp.
  2. R. T. Živaljevic, “Topological methods in discrete geometry”, Ch. 21, Handbook of discrete and computational geometry, Discrete Math. Appl. (Boca Raton), 3rd ed., CRC Press, Boca Raton, FL, 2017, 551–580
  3. I. Barany, S. B. Shlosman, A. Szűcs, “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc. (2), 23:1 (1981), 158–164
  4. M. Özaydin, Equivariant maps for the symmetric group, Unpublished preprint, Univ. of Wisconsin-Madison, 1987, 17 pp.
  5. А. Ю. Воловиков, “К топологическому обобщению теоремы Тверберга”, Матем. заметки, 59:3 (1996), 454–456
  6. T. Schöneborn, On the topological Tverberg theorem
  7. T. Schöneborn, G. M. Ziegler, “The topological Tverberg theorem and winding numbers”, J. Combin. Theory Ser. A, 112:1 (2005), 82–104
  8. А. Б. Скопенков, “Топологическая гипотеза Тверберга”, УМН, 73:2(440) (2018), 141–174
  9. A. Vučic, R. T. Živaljevic, “Note on a conjecture of Sierksma”, Discrete Comput. Geom., 9:4 (1993), 339–349
  10. S. Hell, “On the number of Tverberg partitions in the prime power case”, European J. Combin., 28:1 (2007), 347–355
  11. R. T. Živaljevic, S. T. Vrecica, “The colored Tverberg's problem and complexes of injective functions”, J. Combin. Theory Ser. A, 61:2 (1992), 309–318
  12. S. T. Vrecica, R. T. Živaljevic, “New cases of the colored Tverberg theorem”, Jerusalem combinatorics '93, Contemp. Math., 178, Amer. Math. Soc., Providence, RI, 1994, 325–334
  13. D. Jojic, S. T. Vrecica, R. T. Živaljevic, “Symmetric multiple chessboard complexes and a new theorem of Tverberg type”, J. Algebraic Combin., 46:1 (2017), 15–31
  14. F. Frick, On affine Tverberg-type results without continuous generalization
  15. A. Kushkuley, Z. Balanov, Geometric methods in degree theory for equivariant maps, Lecture Notes in Math., 1632, Springer-Verlag, Berlin, 1996, vi+136 pp.
  16. D. Jojic, I. Nekrasov, G. Panina, R. Živaljevic, “Alexander $r$-tuples and Bier complexes”, Publ. Inst. Math. (Beograd) (N.S.), 104:118 (2018), 1–22
  17. D. Jojic, S. T. Vrecica, G. Panina, R. Živaljevic, “Generalized chessboard complexes and discrete Morse theory”, Чебышевский сб., 21:2 (2020), 207–227
  18. D. Jojic, G. Panina, R. Živaljevic, “A Tverberg type theorem for collectively unavoidable complexes”, Israel J. Math., 241:1 (2021), 17–36
  19. R. Forman, “A user's guide to discrete Morse theory”, Sem. Lothar. Combin., 48 (2002), B48c, 35 pp.
  20. I. Mabillard, U. Wagner, “Eliminating Tverberg points, I. An analogue of the Whitney trick”, Computational geometry (SoCG{'14}), ACM, New York, 2014, 171–180
  21. I. Mabillard, U. Wagner, Eliminating higher-multiplicity intersections, I. A Whitney trick for Tverberg-type problems
  22. I. Mabillard, U. Wagner, “Eliminating higher-multiplicity intersections, II. The deleted product criterion in the $r$-metastable range”, 32nd International symposium on computational geometry (SoCG{'16}), LIPIcs. Leibniz Int. Proc. Inform., 51, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016, 51, 12 pp.
  23. A. Skopenkov, On the metastable Mabillard–Wagner conjecture
  24. A. B. Skopenkov, Eliminating higher-multiplicity intersections in the metastable dimension range
  25. A. B. Skopenkov, Invariants of graph drawings in the plane
  26. P. V. M. Blagojevic, B. Matschke, G. M. Ziegler, “Optimal bounds for the colored Tverberg problem”, J. Eur. Math. Soc. (JEMS), 17:4 (2015), 739–754
  27. I. Barany, P. V. M. Blagojevic, G. M. Ziegler, “Tverberg's theorem at 50: extensions and counterexamples”, Notices Amer. Math. Soc., 63:7 (2016), 732–739
  28. I. Barany, P. Soberon, “Tverberg's theorem is 50 years old: a survey”, Bull. Amer. Math. Soc. (N.S.), 55:4 (2018), 459–492
  29. I. Barany, D. G. Larman, “A colored version of Tverberg's theorem”, J. London Math. Soc. (2), 45:2 (1992), 314–320
  30. K. S. Sarkaria, “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565
  31. А. Ю. Воловиков, “К теореме ван Кампена–Флореса”, Матем. заметки, 59:5 (1996), 663–670
  32. P. V. M. Blagojevic, F. Frick, G. M. Ziegler, “Tverberg plus constraints”, Bull. Lond. Math. Soc., 46:5 (2014), 953–967
  33. R. Živaljevic, “User's guide to equivariant methods in combinatorics”, Publ. Inst. Math. (Beograd) (N.S.), 59(73) (1996), 114–130
  34. R. T. Živaljevic, “User's guide to equivariant methods in combinatorics. II”, Publ. Inst. Math. (Beograd) (N.S.), 64(78) (1998), 107–132
  35. D. Jojic, S. T. Vrecica, R. T. Živaljevic, “Multiple chessboard complexes and the colored Tverberg problem”, J. Combin. Theory Ser. A, 145 (2017), 400–425

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Йойич Д., Панина Г.Y., Живалевич Р.T.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).