Outer billiards outside regular polygons: tame case

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the periodicity problem, that is, the existence of an aperiodic point andfullness of measure of the set of periodic points for outer billiards outside regular n-gons.The lattice casesn=3,4,6 are trivial: no aperiodic points exist and the set of periodic points is of full measure.The cases n=5,10,8,12 (and only these cases) are regarded as tame. The periodicityproblems were solved for n=5 in a breakthrough paper by Tabachnikov, who pioneered a renormalization-scheme method for studying the arising self-similar structures.The case n=10 is similar to n=5 and was studied earlier by the present author. The presentpaper is devoted to the remaining cases n=8,12. We establish the existence of an aperiodic orbitin outer billiards outside regular octagons and dodecagons and prove that almost all trajectoriesof these outer billiards are periodic. In the regular dodecagon case we give a rigorouscomputer-assisted proof. We establish equivalence between the outer billiards outsidea regular n-gon and a regular n/2-gon, where n is even and n/2 is odd.Our investigation is based on Tabachnikov's renormalization scheme.

About the authors

Philip Dmitrievich Rukhovich

Moscow Institute of Physics and Technology (National Research University)

Email: dprpavlin@gmail.com
without scientific degree, no status

References

  1. Ф. Д. Рухович, “Внешние биллиады вне правильного восьмиугольника: периодичность почти всех орбит и существование апериодической орбиты”, Докл. РАН, 481:3 (2018), 243–246
  2. Ф. Д. Рухович, “Внешний биллиард вне правильного двенадцатиугольника”, Докл. РАН, 485:4 (2019), 415–421
  3. J. Moser, “Is the solar system stable?”, Math. Intelligencer, 1:2 (1978), 65–71
  4. С. Табачников, “Внешние биллиарды”, УМН, 48:6(294) (1993), 75–102
  5. R. E. Schwartz, Outer billiards on kites, Ann. of Math. Stud., 171, Princeton Univ. Press, Princeton, NJ, 2009, xiv+306 pp.
  6. D. Dolgopyat, B. Fayad, “Unbounded orbits for semicircular outer billiard”, Ann. Henri Poincare, 10:2 (2009), 357–375
  7. F. Vivaldi, A. V. Shaidenko, “Global stability of a class of discontinuous dual billiards”, Comm. Math. Phys., 110:4 (1987), 625–640
  8. R. Kolodziej, “The antibilliard outside a polygon”, Bull. Polish Acad. Sci. Math., 37:1-6 (1989), 163–168
  9. E. Gutkin, N. Simanyi, “Dual polygonal billiards and necklace dynamics”, Comm. Math. Phys., 143:3 (1992), 431–449
  10. С. Табачников, Геометрия и биллиарды, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2011, 180 с.
  11. N. Bedaride, J. Cassaigne, “Outer billiards outside regular polygons”, J. Lond. Math. Soc. (2), 84:2 (2011), 303–324
  12. N. Bedaride, J. Cassaigne, Outer billiards outside regular polygons, 2011
  13. Ф. Д. Рухович, “Внешние биллиарды вне правильного десятиугольника: периодичность почти всех орбит и существование апериодической орбиты”, Чебышевский сб., 20:2 (2019), 406–441
  14. J. H. Lowenstein, F. Vivaldi, “Renormalization of one-parameter families of piecewise isometries”, Dyn. Syst., 31:4 (2016), 393–465
  15. J. H. Lowenstein, F. Vivaldi, “Renormalizable two-parameter piecewise isometries”, Chaos, 26:6 (2016), 063119, 12 pp.
  16. R. E. Schwartz, The plaid model, Ann. of Math. Stud., 198, Princeton Univ. Press, Princeton, NJ, 2019, xii+268 pp.
  17. M. Boshernitzan, G. Galperin, T. Krüger, S. Troubetzkoy, “Periodic billiard orbits are dense in rational polygons”, Trans. Amer. Math. Soc., 350:9 (1998), 3523–3535
  18. E. Gutkin, “Billiards in polygons: survey of recent results”, J. Statist. Phys., 83:1-2 (1996), 7–26
  19. P. Ashwin, A. Goetz, P. Peres, A. Rodrigues, “Embeddings of interval exchange transformations into planar piecewise isometries”, Ergodic Theory Dynam. Systems, 40:5 (2020), 1153–1179
  20. N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, eds. V. Berthe, S. Ferenczi, C. Mauduit, A. Siegel, Springer-Verlag, Berlin, 2002, xviii+402 pp.
  21. S. Tabachnikov, “On the dual billiard problem”, Adv. Math., 115:2 (1995), 221–249
  22. R. E. Schwartz, Outer billiards, arithmetic graph and the octagon, 2010
  23. A. Goetz, G. Poggiaspalla, “Rotations by pi/7”, Nonlinearity, 17:5 (2004), 1787–1802

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Рухович Ф.D.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».