Classification of weighted dual graphs consisting of $-2$-curves and exactly one $-3$-curve

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $(V, p)$ be a normal surface singularity. Let $\pi\colon (M, A)\to (V, p)$ be a minimal good resolution of $V$. The weighted dual graphs $\Gamma$ associated to $A$ completely describes the topology and differentiable structure of the embedding of $A$ in $M$. In this paper, we classify all the weighted dual graphs of $A=\bigcup_{i=1}^n A_i$ such that one of the curves $A_i$ is $-3$-curve, and the rest are all $-2$-curves. This is a natural generalization of Artin's classification of rational triple points. Moreover, we compute the fundamental cycles of maximal graphs (see Section 5) which can be used to determine whether the singularities are rational, minimally elliptic or weakly elliptic. We also give the formulas for computing arithmetic and geometric genera of star-shaped graphs.

Full Text

Restricted Access

About the authors

Stephen S.-T. Yau

Department of Mathematical Sciences, School of Sciences, Tsinghua University; Yanqi Lake Beijing Institute of Mathematical Sciences and Applications

Qiwei Zhu

Department of Mathematical Sciences, School of Sciences, Tsinghua University

Huaiqing Zuo

Department of Mathematical Sciences, School of Sciences, Tsinghua University

References

  1. F. Hirzebruch, W. D. Neumann, S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Appl. Math., 4, Marcel Dekker, New York, 1971, v+120 pp.
  2. H. B. Laufer, Normal two-dimensional singularities, Ann. of Math. Stud., 71, Princeton Univ. Press, Princeton, NJ, 1971, xi+161 pp.
  3. W. D. Neumann, “A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves”, Trans. Amer. Math. Soc., 268:2 (1981), 299–344
  4. M. Artin, “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136
  5. J. Stevens, “Simple surface singularities”, Algebr. Geom., 4:2 (2017), 160–176
  6. D. Lorenzini, “Wild quotient singularities of surfaces”, Math. Z., 275:1-2 (2013), 211–232
  7. J. Stevens, “On the classification of rational surface singularities”, J. Singul., 7 (2013), 108–133
  8. M. Tosun, A. Ozkan, Z. Oer, “On the classification of rational singularities of surfaces”, Int. J. Pure Appl. Math., 41:1 (2007), 85–110
  9. Lê Dũng Trang, M. Tosun, “Combinatorics of rational singularities”, Comment. Math. Helv., 79:3 (2004), 582–604
  10. H. B. Laufer, “On minimally elliptic singularities”, Amer. J. Math., 99:6 (1977), 1257–1295
  11. S. Ishii, “On isolated Gorenstein singularities”, Math. Ann., 270:4 (1985), 541–554
  12. K. Konno, “On the Yau cycle of a normal surface singularity”, Asian. J. Math., 16:2 (2012), 279–298
  13. K. Konno, “Certain normal surface singularities of general type”, Methods Appl. Anal., 24:1 (2017), 71–97
  14. K. Konno, D. Nagashima, “Maximal ideal cycles over normal surface singularities of Brieskorn type”, Osaka J. Math., 49:1 (2012), 225–245
  15. A. Nemethi, ““Weakly” elliptic Gorenstein singularities of surfaces”, Invent. Math., 137:1 (1999), 145–167
  16. T. Tomaru, “On Gorenstein surface singularities with fundamental genus $p_fgeq 2$ which satisfy some minimality conditions”, Pacific J. Math., 170:1 (1995), 271–295
  17. P. Wagreich, “Elliptic singularities of surfaces”, Amer. J. Math., 92:2 (1970), 419–454
  18. S. Shing Toung Yau, “On maximally elliptic singularities”, Trans. Amer. Math. Soc., 257:2 (1980), 269–329
  19. S. S.-T. Yau, Mingyi Zhang, Huaiqing Zuo, “Topological classification of simplest Gorenstein non-complete intersection singularities of dimension 2”, Asian J. Math., 19:4 (2015), 651–792
  20. Fan Chung, Yi-Jing Xu, S. S.-T. Yau, “Classification of weighted dual graphs with only complete intersection singularities structures”, Trans. Amer. Math. Soc., 361:7 (2009), 3535–3596
  21. G. Müller, “Symmetries of surface singularities”, J. London Math. Soc. (2), 59:2 (1999), 491–506
  22. Ж. Серр, Алгебраические группы и поля классов, Мир, М., 1968, 285 с.
  23. H. B. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608
  24. H. Grauert, “Über Modifikationen und exzeptionelle analytische Mengen”, Math. Ann., 146 (1962), 331–368
  25. T. Okuma, “The geometric genus of splice quotient singularities”, Trans. Amer. Math. Soc., 360:12 (2008), 6643–6659
  26. W. D. Neumann, J. Wahl, “Complete intersection singularities of splice type as universal abelian covers”, Geom. Topol., 9 (2005), 699–755
  27. M. Tomari, “Maximal-ideal-adic filtration on $R^1psi_*mathscr O_{tilde{V}}$ for normal two-dimensional singularities”, Complex analytic singularities, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, 633–647
  28. J. Nagy, A. Nemethi, “The Abel map for surface singularities II. Generic analytic structure”, Adv. Math., 371 (2020), 107268, 38 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Yau S.S., Zhu Q., Zuo H.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).