On the positivity of direct image bundles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present paper, we obtain an equivalent relation between the log-plurisubharmonicity of the relative Bergman kernel, the Griffiths and Nakano positivity for the direct image with the natural $L^2$ metric, by finding a converse of Berndtsson’s Theorem on the direct image. A converse of Berndtsson’s generalization of Kiselman minimal principle is also obtained.

Full Text

Restricted Access

About the authors

Zhi Li

School of Science, Beijing University of Posts and Telecommunications

Xiangyu Zhou

Academy of Mathematics and Systems Science, Chinese Academy of Sciences; Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences

Email: xyzhou@math.ac.cn
PhD

References

  1. B. Berndtsson, “Curvature of vector bundles associated to holomorphic fibrations”, Ann. of Math. (2), 169:2 (2009), 531–560
  2. B. Berndtsson, “Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains”, Ann. Inst. Fourier (Grenoble), 56:6 (2006), 1633–1662
  3. B. Berndtsson, M. Păun, “Bergman kernels and the pseudoeffectivity of relative canonical bundles”, Duke Math. J., 145:2 (2008), 341–378
  4. Fusheng Deng, Zhiwei Wang, Liyou Zhang, Xiangyu Zhou, New characterizations of plurisubharmonic functions and positivity of direct image sheaves
  5. Fusheng Deng, Jiafu Ning, Zhiwei Wang, Xiangyu Zhou, “Positivity of holomorphic vector bundles in terms of $L^p$-conditions for $overline{partial}$”, Math. Ann., 385:1-2 (2023), 575–607
  6. T. Inayama, “Nakano positivity of singular Hermitian metrics and vanishing theorems of Demailly–Nadel–Nakano type”, Algebr. Geom., 9:1 (2022), 69–92
  7. J.-P. Demailly, Complex analytic and differential geometry, 2012, 455 pp.
  8. Qi'an Guan, Xiangyu Zhou, “A solution of an $L^2$ extension problem with an optimal estimate and applications”, Ann. of Math. (2), 181:3 (2015), 1139–1208
  9. Qi'an Guan, XiangYu Zhou, “Strong openness of multiplier ideal sheaves and optimal $L^2$ extension”, Sci. China Math., 60:6 (2017), 967–976
  10. B. Berndtsson, L. Lempert, “A proof of the Ohsawa–Takegoshi theorem with sharp estimates”, J. Math. Soc. Japan, 68:4 (2016), 1461–1472
  11. A. Prekopa, “On logarithmic concave measures and functions”, Acta Sci. Math. (Szeged), 34 (1973), 335–343
  12. C. O. Kiselman, “The partial Legendre transformation for plurisubharmonic functions”, Invent. Math., 49:2 (1978), 137–148
  13. B. Berndtsson, “Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions”, Math. Ann., 312:4 (1998), 785–792
  14. K. Ball, F. Barthe, A. Naor, “Entropy jumps in the presence of a spectral gap”, Duke Math. J., 119:1 (2003), 41–63
  15. D. Cordero-Erausquin, “On Berndtsson's generalization of Prekopa's theorem”, Math. Z., 249:2 (2005), 401–410
  16. L. Hörmander, “$L^2$ estimates and existence theorems for the $overline{partial}$ operator”, Acta. Math., 113:1 (1965), 89–152
  17. So-Chin Chen, Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Stud. Adv. Math., 19, Amer. Math. Soc., Providence, RI; International Press, Boston, MA, 2001, xii+380 pp.
  18. J.-P. Demailly, “Estimations $L^2$ pour l'operateur $overline{partial}$ d'un fibre vectoriel holomorphe semi-positif au-dessus d'une variete Kählerienne complète”, Ann. Sci. Ecole Norm. Sup. (4), 15:3 (1982), 457–511
  19. J.-P. Demailly, Analytic methods in algebraic geometry, Surv. Mod. Math., 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2010/2012, viii+231 pp.
  20. T. Ohsawa, $L^2$ approaches in several complex variables. Development of Oka–Cartan theory by $L^2$ estimates for the $overlinepartial$ operator, Springer Monogr. Math., Springer, Tokyo, 2015, ix+196 pp.
  21. Xiangyu Zhou, “A survey on $L^2$ extension problem”, Complex geometry and dynamics, Abel Symp., 10, Springer, Cham, 2015, 291–309
  22. T. Ohsawa, K. Takegoshi, “On the extension of $L^2$ holomorphic functions”, Math. Z., 195:2 (1987), 197–204
  23. W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987, xiv+416 pp.
  24. V. Guedj, A. Zeriahi, Degenerate complex Monge–Ampère equations, EMS Tracts Math., 26, Eur. Math. Soc. (EMS), Zürich, 2017, xxiv+472 pp.
  25. L. Hörmander, Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994, viii+414 pp.
  26. L. Lempert, “Modules of square integrable holomorphic germs”, Analysis meets geometry, Trends Math., Birkhäuser/Springer, Cham, 2017, 311–333
  27. Zhuo Liu, Hui Yang, Xiangyu Zhou, “New properties of multiplier submodule sheaves”, C. R. Math. Acad. Sci. Paris, 360 (2022), 1205–1212
  28. Zhuo Liu, Hui Yang, Xiangyu Zhou, On the multiplier submodule sheaves associated to singular Nakano semi-positive metrics
  29. H. Raufi, Log concavity for matrix-valued functions and a matrix-valued Prekopa theorem
  30. F. Maitani, H. Yamaguchi, “Variation of Bergman metrics on Riemann surfaces”, Math. Ann., 330:3 (2004), 477–489

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Li Z., Щаньюй Чжоу X.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).