On higher-dimensional del Pezzo varieties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study del Pezzo varieties, higher-dimensional analogues of del Pezzo surfaces. In particular, we introduce ADE classification of del Pezzo varieties, show that in type $\mathrm A$ the dimension of non-conical del Pezzo varieties is bounded by $12 - d - r$, where $d$ is the degree and $r$ is the rank of the class group, and classify maximal del Pezzo varieties.

About the authors

Alexander Gennad'evich Kuznetsov

Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: akuznet@mi-ras.ru
Doctor of physico-mathematical sciences, no status

Yuri Gennadievich Prokhorov

Steklov Mathematical Institute of Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

Email: prokhoro@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

References

  1. V. A. Iskovskih, “Fano 3-folds. I”, Izv. Akad. Nauk SSSR Ser. Mat., 41:3 (1977), 516–562
  2. T. Fujita, “On the structure of polarized manifolds with total deficiency one. I”, J. Math. Soc. Japan, 32:4 (1980), 709–725
  3. P. Jahnke, T. Peternell, “Almost del Pezzo manifolds”, Adv. Geom., 8:3 (2008), 387–411
  4. M. Andreatta, L. Tasin, “Fano–Mori contractions of high length on projective varieties with terminal singularities”, Bull. Lond. Math. Soc., 46:1 (2014), 185–196
  5. Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418
  6. A. Kuznetsov, “Homological projective duality”, Publ. Math. Inst. Hautes Etudes Sci., 105 (2007), 157–220
  7. T. Beckmann, P. Belmans, Homological projective duality for the Segre cubic (to appear)
  8. H. Ahmadinezhad, I. Cheltsov, J. Park, C. Shramov, Double Veronese cones with $28$ nodes (to appear)
  9. Kil-Ho Shin, “$3$-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12:2 (1989), 375–385
  10. T. Fujita, “Projective varieties of $Delta$-genus one”, Algebraic and topological theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1986, 149–175
  11. T. Fujita, “On singular del Pezzo varieties”, Algebraic geometry (L'Aquila, 1988), Lecture Notes in Math., 1417, Springer, Berlin, 1990, 117–128
  12. V. A. Alexeev, “Theorems about good divisors on log {F}ano varieties (case of index $r>n-2$)”, Algebraic geometry (Chicago, IL, 1989), Lecture Notes in Math., 1479, Springer, Berlin, 1991, 1–9
  13. F. Hidaka, K. Watanabe, “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 4:2 (1981), 319–330
  14. T. Fujita, “Defining equations for certain types of polarized varieties”, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, 165–173
  15. J. Kollar, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens, A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp.
  16. I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 443–548
  17. Yu. G. Prokhorov, “On birational involutions of $mathbb P^3$”, Izv. Ross. Akad. Nauk Ser. Mat., 77:3 (2013), 199–222
  18. C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468
  19. Yu. G. Prokhorov, V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199
  20. Yi Hu, S. Keel, “Mori dream spaces and GIT”, Michigan Math. J., 48 (2000), 331–348
  21. S. Ishii, Introduction to singularities, Springer, Tokyo, 2014, viii+223 pp.
  22. E. Yasinsky, “Subgroups of odd order in the real plane Cremona group”, J. Algebra, 461 (2016), 87–120
  23. V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–247
  24. R. Hartshorne, “Stable reflexive sheaves”, Math. Ann., 254:2 (1980), 121–176
  25. Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360
  26. G. V. Ravindra, V. Srinivas, “The Grothendieck–Lefschetz theorem for normal projective varieties”, J. Algebraic Geom., 15:3 (2006), 563–590
  27. A. Kuznetsov, Derived categories of families of Fano threefolds
  28. C. Liedtke, “Morphisms to Brauer–Severi varieties, with applications to del Pezzo surfaces”, Geometry over nonclosed fields, Simons Symp., Springer, Cham, 2017, 157–196
  29. H. A. Hamm, Lê Dũng Trang, “Un theorème de Zariski du type de Lefschetz”, Ann. Sci. Ecole Norm. Sup. (4), 6:4 (1973), 317–355
  30. A. G. Kuznetsov, “On linear sections of the spinor tenfold. I”, Izv. Ross. Akad. Nauk Ser. Mat., 82:4 (2018), 53–114
  31. A. Kuznetsov, Yu. Prokhorov, “Rationality of Mukai varieties over non-closed fields”, Rationality of varieties, Progr. Math., 342, Birkhäuser/Springer, Cham, 2021, 249–290
  32. Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, Nauka, Moscow, 1972, 304 pp. (Russian)
  33. A. Kuznetsov, Yu. Prokhorov, “Rationality over non-closed fields of Fano threefolds with higher geometric Picard rank”, J. Inst. Math. Jussieu, published online by Cambridge University Press 05/AUG/2022
  34. O. Debarre, A. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76
  35. A. Kuznetsov, Yu. Prokhorov, “Rationality of Fano threefolds over non-closed fields”, Amer. J. Math., 145:2 (2023), 335–411
  36. J. Piontkowski, A. Van de Ven, “The automorphism group of linear sections of the Grassmannians $mathbb{G}(1,N)$”, Doc. Math., 4 (1999), 623–664
  37. J. G. Semple, L. Roth, Introduction to algebraic geometry, Oxford Sci. Publ., Reprint of the 1949 original, The Clarendon Press, Oxford Univ. Press, New York, 1985, xviii+454 pp.
  38. H. F. Baker, “Segre's ten nodal cubic primal in space of four dimensions and del Pezzo's surface in five dimensions”, J. London Math. Soc., 6:3 (1931), 176–185
  39. I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp.
  40. B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Math., 1637, Springer-Verlag, Berlin, 1996, xiv+332 pp.
  41. I. Cheltsov, A. Kuznetsov, K. Shramov, “Coble fourfold, {$mathfrak{S}_6$}-invariant quartic threefolds, and Wiman–Edge sextics”, Algebra Number Theory, 14:1 (2020), 213–274

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Kuznetsov A.G., Prokhorov Y.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).