One advance in the proof of the conjecture on meromorphic solutions of Briot–Bouquet type equations
- Authors: Yanchenko A.Y.1
-
Affiliations:
- National Research University "Moscow Power Engineering Institute"
- Issue: Vol 86, No 5 (2022)
- Pages: 197-208
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133909
- DOI: https://doi.org/10.4213/im9265
- ID: 133909
Cite item
Abstract
We study entire solutions (solutions which are entire functions) of differential equations of the form$P(y,y^{(n)})=0$, where $P$ is a polynomial with complex coefficients, $n$ is a natural number.We show that, under some constraints on $P$, all entire solutions of such equations are eitherpolynomials, or functions of the form $e^{-L\beta z}Q(e^{\beta z})$, where $L$ is a nonnegative integer, $\beta$ isa complex number, and $Q$ is a polynomial with complex coefficients.This verifies the well-known A. E. Eremenko's conjecture on meromorphic solutions of autonomousBriot–Bouquet type equations for entire solutions in the nondegenerate case.
About the authors
Aleksandr Yakovlevich Yanchenko
National Research University "Moscow Power Engineering Institute"Candidate of physico-mathematical sciences, Associate professor
References
- E. Picard, “Sur une propriete des fonctions uniformes d'une variable et sur une classe d'equations differentielles”, C. R. Acad. Sci. Paris, 91 (1880), 1058–1061
- E. Hille, Ordinary differential equations in the complex domain, Pure Appl. Math., Wiley-Interscience [John Wiley & Sons], New York–London–Sydney, 1976, xi+484 pp.
- S. B. Bank, R. P. Kaufman, “On Briot–Bouquet differential equations and a question of Einar Hille”, Math. Z., 177:4 (1981), 549–559
- А. Э. Ерeменко, “Мероморфные решения алгебраических дифференциальных уравнений”, УМН, 37:4(226) (1982), 53–82
- А. Э. Ерeменко, “Мероморфные решения уравнений типа Брио–Буке”, Теория функций, функциональный анализ и их приложения, 38, Вища школа, Харьков, 1982, 48–56
- A. E. Eremenko, Liangwen Liao, Tuen Wai Ng, “Meromorphic solutions of higher order Briot–Bouquet differential equations”, Math. Proc. Cambridge Philos. Soc., 146:1 (2009), 197–206
- Б. Я. Левин, Распределение корней целых функций, Гостехиздат, М., 1956, 632 с.
- W. K. Hayman, “The growth of solutions of algebraic differential equations”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7:2 (1996), 67–73
- Г. Виттих, Новейшие исследования по однозначным аналитическим функциям, Физматгиз, М., 1960, 319 с.
- А. Б. Шидловский, Трансцендентные числа, Наука, М., 1987, 448 с.
- В. А. Подкопаева, А. Я. Янченко, “О целых решениях конечного порядка одного класса алгебраических дифференциальных уравнений”, Дифференц. уравнения, 56:10 (2020), 1318–1322
- E. Hille, “Higher order Briot–Bouquet differential equations”, Ark. Mat., 16:1-2 (1978), 271–286
Supplementary files
