Coherent Sheaves, Chern Classes, and Superconnections on compact complex-analytic manifolds

Cover Page
  • Authors: Bondal A.I.1,2,3, Rosly A.A.4,5,6
  • Affiliations:
    1. Steklov Mathematical Institute of Russian Academy of Sciences
    2. Moscow Institute of Physics and Technology (National Research University)
    3. Kavli Institute for the Physics and Mathematics of the Universe
    4. Skolkovo Institute of Science and Technology
    5. Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
    6. HSE University
  • Issue: Vol 87, No 3 (2023)
  • Pages: 23-55
  • Section: Articles
  • URL: https://journals.rcsi.science/1607-0046/article/view/133907
  • DOI: https://doi.org/10.4213/im9386
  • ID: 133907

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We construct a twist-closed enhancement of the category $\mathcal D^b_{coh}(X)$, the boundedderived category of complexes of $\mathcal O_X$-modules with coherent cohomology, by meansof the DG-category of $\bar\partial$-superconnections. Then we apply the techniques of $\bar\partial$-superconnections to dene Chern classes and Bott–Chern classes of objects in the category, in particular, of coherent sheaves.

About the authors

Alexey Igorevich Bondal

Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); Kavli Institute for the Physics and Mathematics of the Universe

Email: bondal@mi-ras.ru
Doctor of physico-mathematical sciences

Alexei Andreevich Rosly

Skolkovo Institute of Science and Technology; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); HSE University

Email: rosly@itep.ru
Candidate of physico-mathematical sciences

References

  1. M. Verbitsky, “Coherent sheaves on general $K3$ surfaces and tori”, Pure Appl. Math. Q., 4:3 (2008), 651–714
  2. A. Bondal, D. Orlov, “Reconstruction of a variety from the derived category and groups of autoequivalences”, Compositio Math., 125:3 (2001), 327–344
  3. Д. О. Орлов, “Производные категории когерентных пучков на абелевых многообразиях и эквивалентности между ними”, Изв. РАН. Сер. матем., 66:3 (2002), 131–158
  4. M. Anel, B. Toën, “Denombrabilite des classes d'equivalences derivees de varietes algebriques”, J. Algebraic Geom., 18:2 (2009), 257–277
  5. J. Lesieutre, “Derived-equivalent rational threefolds”, Int. Math. Res. Not. IMRN, 2015:15 (2015), 6011–6020
  6. А. И. Бондал, М. М. Капранов, “Представимые функторы, функторы Серра и перестройки”, Изв. АН СССР. Сер. матем., 53:6 (1989), 1183–1205
  7. A. I. Bondal, M. van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36
  8. B. Toën, M. Vaquie, “Algebrisation des varietes analytiques complexes et categories derivees”, Math. Ann., 342:4 (2008), 789–831
  9. А. И. Бондал, М. М. Капранов, “Оснащенные триангулированные категории”, Матем. сб., 181:5 (1990), 669–683
  10. J. Block, “Duality and equivalence of module categories in noncommutative geometry”, A celebration of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010, 311–339
  11. C. Voisin, “A counterexample to the Hodge conjecture extended to Kähler varieties”, Int. Math. Res. Not. IMRN, 2002:20 (2002), 1057–1075
  12. N. Pali, “Faisceaux $overlinepartial$-coherents sur les varietes complexes”, Math. Ann., 336:3 (2006), 571–615
  13. N. Pali, Une caracterisation differentielle des faisceaux analytiques coherents sur une variete complexe
  14. D. Quillen, “Superconnections and the Chern character”, Topology, 24:1 (1985), 89–95
  15. A. Bondal, A. Rosly, Derived categories for complex-analytic manifolds, IPMU11-0117, IPMU, Kashiwa, Japan, 2011, 16 pp.
  16. J.-M. Bismut, Shu Shen, Zhaoting Wei, Coherent sheaves, superconnections, and RRG
  17. A. I. Bondal, M. Larsen, V.Ȧ. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not. IMRN, 2004:29 (2004), 1461–1495
  18. M. M. Kapranov, “On DG-modules over the de Rham complex and the vanishing cycles functor”, Algebraic geometry (Chicago, IL, 1989), Lecture Notes in Math., 1479, Springer, Berlin, 1991, 57–86
  19. C. Sabbah, Introduction to the theory of $mathscr D$-modules, Lecture notes (Nakai, 2011), 58 pp.
  20. L. Illusie, “Existence de resolutions globales”, Theorie des intersections et theorème de Riemann–Roch, Lecture Notes in Math., 225, Springer-Verlag, Berlin–New York, 1971, 160–221
  21. H. W. Schuster, “Locally free resolutions of coherent sheaves on surfaces”, J. Reine Angew. Math., 1982:337 (1982), 159–165
  22. M. Kashiwara, P. Schapira, Sheaves on manifolds, Grundlehren Math. Wiss., 292, Springer-Verlag, Berlin, 1994, x+512 pp.
  23. M. F. Atiyah, F. Hirzebruch, “Analytic cycles on complex manifolds”, Topology, 1:1 (1962), 25–45
  24. H. Grauert, “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2), 68:2 (1958), 460–472
  25. Б. Мальгранж, Идеалы дифференцируемых функций, Мир, М., 1968, 131 с.
  26. J. Grivaux, “Chern classes in Deligne cohomology for coherent analytic sheaves”, Math. Ann., 347:2 (2010), 249–284
  27. D. S. Freed, Geometry of Dirac operators, unpublished notes, 1987
  28. D. Angella, A. Tomassini, “On the $partialoverlinepartial$-lemma and Bott–Chern cohomology”, Invent. Math., 192:1 (2013), 71–81
  29. М. Атья, И. Макдональд, Введение в коммутативную алгебру, Мир, М., 1972, 160 с.
  30. M. F. Atiyah, F. Hirzebruch, “The Riemann–Roch theorem for analytic embeddings”, Topology, 1:2 (1962), 151–166
  31. Н. Бурбаки, Коммутативная алгебра, Элементы математики, M., Мир, 1971, 708 с.
  32. Hua Qiang, On the Bott–Chern characteristic classes for coherent sheaves

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bondal A.I., Rosly A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).