Coherent Sheaves, Chern Classes, and Superconnections on compact complex-analytic manifolds
- Authors: Bondal A.I.1,2,3, Rosly A.A.4,5,6
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Kavli Institute for the Physics and Mathematics of the Universe
- Skolkovo Institute of Science and Technology
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- HSE University
- Issue: Vol 87, No 3 (2023)
- Pages: 23-55
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133907
- DOI: https://doi.org/10.4213/im9386
- ID: 133907
Cite item
Abstract
We construct a twist-closed enhancement of the category $\mathcal D^b_{coh}(X)$, the boundedderived category of complexes of $\mathcal O_X$-modules with coherent cohomology, by meansof the DG-category of $\bar\partial$-superconnections. Then we apply the techniques of $\bar\partial$-superconnections to dene Chern classes and Bott–Chern classes of objects in the category, in particular, of coherent sheaves.
About the authors
Alexey Igorevich Bondal
Steklov Mathematical Institute of Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University); Kavli Institute for the Physics and Mathematics of the Universe
Email: bondal@mi-ras.ru
Doctor of physico-mathematical sciences
Alexei Andreevich Rosly
Skolkovo Institute of Science and Technology; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); HSE University
Email: rosly@itep.ru
Candidate of physico-mathematical sciences
References
- M. Verbitsky, “Coherent sheaves on general $K3$ surfaces and tori”, Pure Appl. Math. Q., 4:3 (2008), 651–714
- A. Bondal, D. Orlov, “Reconstruction of a variety from the derived category and groups of autoequivalences”, Compositio Math., 125:3 (2001), 327–344
- Д. О. Орлов, “Производные категории когерентных пучков на абелевых многообразиях и эквивалентности между ними”, Изв. РАН. Сер. матем., 66:3 (2002), 131–158
- M. Anel, B. Toën, “Denombrabilite des classes d'equivalences derivees de varietes algebriques”, J. Algebraic Geom., 18:2 (2009), 257–277
- J. Lesieutre, “Derived-equivalent rational threefolds”, Int. Math. Res. Not. IMRN, 2015:15 (2015), 6011–6020
- А. И. Бондал, М. М. Капранов, “Представимые функторы, функторы Серра и перестройки”, Изв. АН СССР. Сер. матем., 53:6 (1989), 1183–1205
- A. I. Bondal, M. van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36
- B. Toën, M. Vaquie, “Algebrisation des varietes analytiques complexes et categories derivees”, Math. Ann., 342:4 (2008), 789–831
- А. И. Бондал, М. М. Капранов, “Оснащенные триангулированные категории”, Матем. сб., 181:5 (1990), 669–683
- J. Block, “Duality and equivalence of module categories in noncommutative geometry”, A celebration of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, 50, Amer. Math. Soc., Providence, RI, 2010, 311–339
- C. Voisin, “A counterexample to the Hodge conjecture extended to Kähler varieties”, Int. Math. Res. Not. IMRN, 2002:20 (2002), 1057–1075
- N. Pali, “Faisceaux $overlinepartial$-coherents sur les varietes complexes”, Math. Ann., 336:3 (2006), 571–615
- N. Pali, Une caracterisation differentielle des faisceaux analytiques coherents sur une variete complexe
- D. Quillen, “Superconnections and the Chern character”, Topology, 24:1 (1985), 89–95
- A. Bondal, A. Rosly, Derived categories for complex-analytic manifolds, IPMU11-0117, IPMU, Kashiwa, Japan, 2011, 16 pp.
- J.-M. Bismut, Shu Shen, Zhaoting Wei, Coherent sheaves, superconnections, and RRG
- A. I. Bondal, M. Larsen, V.Ȧ. Lunts, “Grothendieck ring of pretriangulated categories”, Int. Math. Res. Not. IMRN, 2004:29 (2004), 1461–1495
- M. M. Kapranov, “On DG-modules over the de Rham complex and the vanishing cycles functor”, Algebraic geometry (Chicago, IL, 1989), Lecture Notes in Math., 1479, Springer, Berlin, 1991, 57–86
- C. Sabbah, Introduction to the theory of $mathscr D$-modules, Lecture notes (Nakai, 2011), 58 pp.
- L. Illusie, “Existence de resolutions globales”, Theorie des intersections et theorème de Riemann–Roch, Lecture Notes in Math., 225, Springer-Verlag, Berlin–New York, 1971, 160–221
- H. W. Schuster, “Locally free resolutions of coherent sheaves on surfaces”, J. Reine Angew. Math., 1982:337 (1982), 159–165
- M. Kashiwara, P. Schapira, Sheaves on manifolds, Grundlehren Math. Wiss., 292, Springer-Verlag, Berlin, 1994, x+512 pp.
- M. F. Atiyah, F. Hirzebruch, “Analytic cycles on complex manifolds”, Topology, 1:1 (1962), 25–45
- H. Grauert, “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math. (2), 68:2 (1958), 460–472
- Б. Мальгранж, Идеалы дифференцируемых функций, Мир, М., 1968, 131 с.
- J. Grivaux, “Chern classes in Deligne cohomology for coherent analytic sheaves”, Math. Ann., 347:2 (2010), 249–284
- D. S. Freed, Geometry of Dirac operators, unpublished notes, 1987
- D. Angella, A. Tomassini, “On the $partialoverlinepartial$-lemma and Bott–Chern cohomology”, Invent. Math., 192:1 (2013), 71–81
- М. Атья, И. Макдональд, Введение в коммутативную алгебру, Мир, М., 1972, 160 с.
- M. F. Atiyah, F. Hirzebruch, “The Riemann–Roch theorem for analytic embeddings”, Topology, 1:2 (1962), 151–166
- Н. Бурбаки, Коммутативная алгебра, Элементы математики, M., Мир, 1971, 708 с.
- Hua Qiang, On the Bott–Chern characteristic classes for coherent sheaves
Supplementary files
