Ramification filtration and differential forms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let $L$ be a complete discrete valuation field of prime characteristic $p$ with finite residue field. Denote by $\Gamma_{L}^{(v)}$ the ramification subgroups of $\Gamma_{L}=\operatorname{Gal}(L^{\mathrm{sep}}/L)$. We consider the category $\operatorname{M\Gamma}_{L}^{\mathrm{Lie}}$ of finite $\mathbb{Z}_p[\Gamma_{L}]$-modules $H$, satisfying some additional (Lie)-condition on the image of $\Gamma_L$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$. In the paper it is proved that all information about the images of the groups $\Gamma_L^{(v)}$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$ can be explicitly extracted from some differential forms $\widetilde{\Omega} [N]$ on the Fontaine etale $\phi $-module $M(H)$ associated with $H$. The forms $\widetilde{\Omega}[N]$ are completely determined by a canonical connection $\nabla $ on $M(H)$. In the case of fields $L$ of mixed characteristic, which contain a primitive $p$th root of unity, we show that a similar problem for $\mathbb{F}_p[\Gamma_L]$-modules also admits a solution. In this case we use the field-of-norms functor to construct the corresponding $\phi $-module together with the action of the Galois group of a cyclic extension $L_1$ of $L$ of degree $p$. Then our solution involves the characteristic $p$ part (provided by the field-of-norms functor) and the condition for a “good” lift of a generator of $\operatorname{Gal}(L_1/L)$. Apart from the above differential forms the statement of this condition uses the power series coming from the $p$-adic period of the formal group $\mathbb{G}_m$.Bibliography: 21 titles.

About the authors

Viktor Aleksandrovich Abrashkin

University of Durham; Steklov Mathematical Institute of Russian Academy of Sciences

Email: victor.abrashkin@durham.ac.uk
Doctor of physico-mathematical sciences, no status

References

  1. J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer-Verlag, New York–Berlin, 1979, viii+241 pp.
  2. И. Р. Шафаревич, “О $p$-расширениях”, Матем. сб., 20(62):2 (1947), 351–363
  3. С. П. Демушкин, “Группа максимального $p$-расширения локального поля”, Изв. АН СССР. Сер. матем., 25:3 (1961), 329–346
  4. U. Jannsen, K. Wingberg, “Die Struktur der absoluten Galoisgruppe $mathfrak p$-adischer Zahlkörper”, Invent. Math., 70:1 (1982/83), 71–98
  5. Sh. Mochizuki, “A version of the Grothendieck conjecture for $p$-adic local fields”, Internat. J. Math., 8:4 (1997), 499–506
  6. V. A. Abrashkin, “On a local analogue of the Grothendieck conjecture”, Internat. J. Math., 11:2 (2000), 133–175
  7. Х. Кох, Теория Галуа $p$-расширений, Мир, М., 1973, 199 с.
  8. В. А. Абрашкин, “Фильтрация ветвления группы Галуа локального поля”, Тр. С.-Петерб. матем. о-ва, 3, Изд-во С.-Петерб. ун-та, СПб., 1994
  9. В. А. Абрашкин, “Фильтрация ветвления группы Галуа локадьного поля. II”, Теория чисел, алгебра и алгебраическая геометрия, Сборник статей. К семидесятилетию со дня рождения академика Игоря Ростиславовича Шафаревича, Тр. МИАН, 208, Наука, Физматлит, М., 1995, 18–69
  10. В. А. Абрашкин, “Фильтрация ветвления группы Галуа локального поля. III”, Изв. РАН. Сер. матем., 62:5 (1998), 3–48
  11. V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $
  12. V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $
  13. V. Abrashkin, “Groups of automorphisms of local fields of period $p^M$ and nilpotent class $
  14. P. Berthelot, W. Messing, “Theorie de Deudonne cristalline. III. Theorèmes d'equivalence et de pleine fidelite”, The Grothendieck festschrift, v. 1, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990, 173–247
  15. M. Lazard, “Sur les groupes nilpotents et les anneaux de Lie”, Ann. Sci. Ecole Norm. Sup. (3), 71:2 (1954), 101–190
  16. J.-M. Fontaine, “Representations $p$-adiques des corps locaux. I”, The Grothendieck festschrift, v. 2, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990, 249–309
  17. V. Abrashkin, R. Jenni, “The field-of-norms functor and the Hilbert symbol for higher local fields”, J. Theor. Nombres Bordeaux, 24:1 (2012), 1–39
  18. V. Abrashkin, “Galois groups of local fields, Lie algebras and ramification”, Arithmetic and geometry, London Math. Soc. Lecture Note Ser., 420, Cambridge Univ. Press, Cambridge, 2015, 1–23
  19. В. А. Абрашкин, “Фильтрация ветвления и деформации”, Матем. сб., 212:2 (2021), 3–37
  20. A. Bonfiglioli, R. Fulci, Topics in noncommutative algebra, Lecture Notes in Math., 2034, Springer, Heidelberg, 2012, xxii+539 pp.
  21. K. Imai, Ramification groups of some finite Galois extensions of maximal nilpotency class over local fields of positive characteristic

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Abrashkin V.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).