Multivariate tile $\mathrm{B}$-splines
- Authors: Zaitseva T.I.1,2
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 87, No 2 (2023)
- Pages: 89-132
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133903
- DOI: https://doi.org/10.4213/im9296
- ID: 133903
Cite item
Abstract
Tile $\mathrm{B}$-splines in $\mathbb R^d$ are defined as autoconvolutionsof indicators of tiles,which are special self-similar compact sets whose integer translates tilethe space $\mathbb R^d$. These functions are not piecewise-polynomial,however, being directgeneralizations of the classical $\mathrm{B}$-splines, they enjoy many oftheir properties and have some advantages. In particular, exactvalues of the Hölder exponents of tile $\mathrm{B}$-splinesare evaluated and are shown, in some cases, to exceed those of the classical $\mathrm{B}$-splines.Orthonormal systems of wavelets based on tile B-splines are constructed,and estimates of their exponential decay are obtained.Efficiency in applications of tile $\mathrm{B}$-splines is demonstrated on an example of subdivision schemesof surfaces. This efficiency is achieved due to high regularity, fast convergence, and small numberof coefficients in the corresponding refinement equation.
About the authors
Tatyana Ivanovna Zaitseva
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematicswithout scientific degree, no status
References
- К. де Бор, Практическое руководство по сплайнам, Радио и связь, М., 1985, 304 с.
- И. Добеши, Десять лекций по вейвлетам, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 464 с.
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- P. Wojtaszczyk, A mathematical introduction to wavelets, London Math. Soc. Stud. Texts, 37, Cambridge Univ. Press, Cambridge, 1997, xii+261 pp.
- A. Yu. Shadrin, “The $L_{infty}$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: a proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137
- C. de Boor, R. A. DeVore, A. Ron, “On the construction of multivariate (pre)wavelets”, Constr. Approx., 9:2-3 (1993), 123–166
- В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
- П. А. Терехин, “О наилучшем приближении функций в метрике $L_p$ полиномами по аффинной системе”, Матем. сб., 202:2 (2011), 131–158
- C. De Boor, K. Höllig, S. Riemenschneider, Box splines, Appl. Math. Sci., 98, Springer-Verlag, New York, 1993, xviii+200 pp.
- M. Charina, C. Conti, K. Jetter, G. Zimmermann, “Scalar multivariate subdivision schemes and box splines”, Comput. Aided Geom. Design, 28:5 (2011), 285–306
- D. Van de Ville, T. Blu, M. Unser, “Isotropic polyharmonic B-splines: scaling functions and wavelets”, IEEE Trans. Image Process., 14:11 (2005), 1798–1813
- V. G. Zakharov, “Elliptic scaling functions as compactly supported multivariate analogs of the B-splines”, Int. J. Wavelets Multiresolut. Inf. Process., 12:02 (2014), 1450018, 23 pp.
- S. Zube, “Number systems, $alpha$-splines and refinement”, J. Comput. Appl. Math., 172:2 (2004), 207–231
- J. Lagarias, Yang Wang, “Integral self-affine tiles in $mathbb{R}^n$. II. Lattice tilings”, J. Fourier Anal. Appl., 3:1 (1997), 83–102
- K. Gröchenig, A. Haas, “Self-similar lattice tilings”, J. Fourier Anal. Appl., 1:2 (1994), 131–170
- K. Gröchenig, W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of $mathbb{R}^n$”, IEEE Trans. Inform. Theory, 38:2, Part 2 (1992), 556–568
- A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93, no. 453, Amer. Math. Soc., Providence, RI, 1991, vi+186 pp.
- E. Catmull, J. Clark, “Recursively generated B-spline surfaces on arbitrary topological meshes”, Comput.-Aided Des., 10:6 (1978), 350–355
- T. Zaitseva, TZZZZ/Tile_Bsplines
- C. A. Cabrelli, C. Heil, U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Mem. Amer. Math. Soc., 170, no. 807, Amer. Math. Soc., Providence, RI, 2004, viii+82 pp.
- A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelet frames, Ind. Appl. Math., Springer, Singapore, 2016, xiii+248 pp.
- G. Strang, G. Fix, “A Fourier analysis of the finite element variational method”, Constructive aspects of functional analysis (Erice, 1971), C.I.M.E. Summer Schools, 57, Cremonese, 1973, 793–840
- C. de Boor, R. A. DeVore, A. Ron, “The structure of finitely generated shift-invariant spaces in $L_2(mathbb{R}^d)$”, J. Funct. Anal., 119:1 (1994), 37–78
- C. de Boor, R. Devore, A. Ron, “Approximation from shift-invariant subspaces of $L_2(mathbb{R}^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806
- I. Kirat, Ka-Sing Lau, “On the connectedness of self-affine tiles”, J. London Math. Soc. (2), 62:1 (2000), 291–304
- C. Bandt, G. Gelbrich, “Classification of self-affine lattice tilings”, J. London Math. Soc. (2), 50:3 (1994), 581–593
- G. Gelbrich, “Self-affine lattice reptiles with two pieces in $mathbb{R}^n$”, Math. Nachr., 178 (1996), 129–134
- W. J. Gilbert, “Radix representations of quadratic fields”, J. Math. Anal. Appl., 83:1 (1981), 264–274
- R. F. Gundy, A. L. Jonsson, “Scaling functions on $mathbb{R}^2$ for dilations of determinant $pm 2$”, Appl. Comput. Harmon. Anal., 29:1 (2010), 49–62
- C. Bandt, Combinatorial topology of three-dimensional self-affine tiles
- C. Bandt, “Self-similar sets. 5. Integer matrices and fractal tilings of $mathbb{R}^n$”, Proc. Amer. Math. Soc., 112:2 (1991), 549–562
- Xiaoye Fu, J.-P. Gabardo, Self-affine scaling sets in $mathbb R^2$, Mem. Amer. Math. Soc., 233, no. 1097, Amer. Math. Soc., Providence, RI, 2015, vi+85 pp.
- J. C. Lagarias, Yang Wang, “Haar type orthonormal wavelet bases in $mathbf{R}^2$”, J. Fourier Anal. Appl., 2:1 (1995), 1–14
- T. Zaitseva, “Haar wavelets and subdivision algorithms on the plane”, Adv. Syst. Sci. Appl., 17:3 (2017), 49–57
- V. G. Zakharov, “Rotation properties of 2D isotropic dilation matrices”, Int. J. Wavelets Multiresolut. Inf. Process., 16:1 (2018), 1850001, 14 pp.
- Т. И. Зайцева, В. Ю. Протасов, “Самоподобные 2-аттракторы и тайлы”, Матем. сб., 213:6 (2022), 71–110
- Б. В. Шабат, Введение в комплексный анализ, т. 1, 2, 4-е стереотип. изд., Лань, СПб., 2004, 336 с., 464 с.
- M. Charina, V. Yu. Protasov, “Regularity of anisotropic refinable functions”, Appl. Comput. Harmon. Anal., 47:3 (2019), 795–821
- M. Charina, Th. Mejstrik, “Multiple multivariate subdivision schemes: matrix and operator approaches”, J. Comput. Appl. Math., 349 (2019), 279–291
- М. Г. Крейн, М. А. Рутман, “Линейные операторы, оставляющие инвариантным конус в пространстве Банаха”, УМН, 3:1(23) (1948), 3–95
- В. Ю. Протасов, “Обобщенный совместный спектральный радиус. Геометрический подход”, Изв. РАН. Сер. матем., 61:5 (1997), 99–136
- V. D. Blondel, Yu. Nesterov, “Computationally efficient approximations of the joint spectral radius”, SIAM J. Matrix Anal. Appl., 27:1 (2005), 256–272
- V. D. Blondel, S. Gaubert, J. N. Tsitsiklis, “Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard”, IEEE Trans. Automat. Control, 45:9 (2000), 1762–1765
- N. Guglielmi, V. Protasov, “Exact computation of joint spectral characteristics of linear operators”, Found. Comput. Math., 13:1 (2013), 37–97
- T. Mejstrik, “Algorithm 1011: improved invariant polytope algorithm and applications”, ACM Trans. Math. Software, 46:3 (2020), 29, 26 pp.
- P. Oswald, “Designing composite triangular subdivision schemes”, Comput. Aided Geom. Design, 22:7 (2005), 659–679
- P. Oswald, P. Schröder, “Composite primal/dual $sqrt{3}$-subdivision schemes”, Comput. Aided Geom. Design, 20:3 (2003), 135–164
- Qingtang Jiang, P. Oswald, “Triangular $sqrt 3$-subdivision schemes: the regular case”, J. Comput. Appl. Math., 156:1 (2003), 47–75
- Т. И. Зайцева, “Простые тайлы и аттракторы”, Матем. сб., 211:9 (2020), 24–59
- M. Charina, C. Conti, T. Sauer, “Regularity of multivariate vector subdivision schemes”, Numer. Algorithms, 39:1-3 (2005), 97–113
- N. Dyn, D. Levin, “Subdivision schemes in geometric modelling”, Acta Numer., 11 (2002)
- V. Protasov, “The stability of subdivision operator at its fixed point”, SIAM J. Math. Anal., 33:2 (2001), 448–460
- C. Conti, K. Jetter, “Concerning order of convergence for subdivision”, Numer. Algorithms, 36:4 (2004), 345–363
- A. Cohen, K. Gröchenig, L. F. Villemoes, “Regularity of multivariate refinable functions”, Constr. Approx., 15:2 (1999), 241–255
- D. Mekhontsev, IFStile software
Supplementary files
