On the transference principle and Nesterenko's linear independence criterion
- Authors: German O.N.1,2, Moshchevitin N.G.1,2
-
Affiliations:
- HSE University
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 87, No 2 (2023)
- Pages: 56-68
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133898
- DOI: https://doi.org/10.4213/im9285
- ID: 133898
Cite item
Abstract
About the authors
Oleg Nikolaevich German
HSE University; Moscow Center for Fundamental and Applied Mathematics
Email: german.oleg@gmail.com
Doctor of physico-mathematical sciences, no status
Nikolai Germanovich Moshchevitin
HSE University; Moscow Center for Fundamental and Applied Mathematics
Email: moshchevitin@rambler.ru
Doctor of physico-mathematical sciences, Professor
References
- Ю. В. Нестеренко, “О линейной независимости чисел”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1985, № 1, 46–49
- A. Khintchine, “Über eine Klasse linearer Diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195
- V. Jarnik, “Zum Khintchineschen “Übertragungssatz””, Trav. Inst. Math. Tbilissi, 3 (1938), 193–216
- Y. Bugeaud, M. Laurent, “Exponents of Diophantine approximation”, Diophantine geometry, CRM Series, 4, Ed. Norm., Pisa, 2007, 101–121
- Y. Bugeaud, M. Laurent, “On transfer inequalities in Diophantine approximation. II”, Math. Z., 265:2 (2010), 249–262
- O. N. German, “Intermediate Diophantine exponents and parametric geometry of numbers”, Acta Arith., 154:1 (2012), 79–101
- O. N. German, “On Diophantine exponents and Khintchine's transference principle”, Mosc. J. Comb. Number Theory, 2:2 (2012), 22–51
- W. M. Schmidt, L. Summerer, “Diophantine approximation and parametric geometry of numbers”, Monatsh. Math., 169:1 (2013), 51–104
- O. N. German, N. G. Moshchevitin, “A simple proof of Schmidt–Summerer's inequality”, Monatsh. Math., 170:3-4 (2013), 361–370
- V. Jarnik, “Une remarque sur les approximations diophantiennes lineaires”, Acta Sci. Math. (Szeged), 12 B (1950), 82–86
- V. Jarnik, “Contribution à la theorie des approximations diophantiennes lineaires et homogènes”, Czechoslovak Math. J., 4:79 (1954), 330–353
- A. Marnat, N. G. Moshchevitin, “An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation”, Mathematika, 66:3 (2020), 818–854
- Ngoc Ai Van Nguyen, A. Poëls, D. Roy, “A transference principle for simultaneous rational approximation”, J. Theor. Nombres Bordeaux, 32:2 (2020), 387–402
- J. Schleischitz, “On geometry of numbers and uniform rational approximation to the Veronese curve”, Period. Math. Hung., 83:2 (2021), 233–249
- J. Schleischitz, “Optimality of two inequalities for exponents of Diophantine approximation”, J. Number Theory, 244 (2023), 169–203
- D. Kleinbock, N. Moshchevitin, B. Weiss, “Singular vectors on manifolds and fractals”, Israel J. Math., 245:2 (2021), 589–613
- S. Fischler, W. Zudilin, “A refinement of Nesterenko's linear independence criterion with applications to zeta values”, Math. Ann., 347:4 (2010), 739–763
- A. Chantanasiri, “On the criteria for linear independence of Nesterenko, Fischler and Zudilin”, Chamchuri J. Math., 2:1 (2010), 31–46
- S. Fischler, T. Rivoal, “Irrationality exponent and rational approximations with prescribed growth”, Proc. Amer. Math. Soc., 138:3 (2010), 799–808
Supplementary files
