On the transference principle and Nesterenko's linear independence criterion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the problem of simultaneous approximation of real numbers $\theta_1,…,\theta_n$ by rationals and the dual problem of approximating zero by the values of the linear form $x_0+\theta_1x_1+…+\theta_nx_n$ atinteger points. In this setting we analyse two transference inequalitiesobtained by Schmidt and Summerer. We present a rather simple geometricobservation which proves their result. We also derive several previously unknown corollaries. In particular, we show that, together with German'sinequalities for uniform exponents, Schmidt and Summerer's inequalities implythe inequalities by Bugeaud and Laurent and “one half” of the inequalitiesby Marnat and Moshchevitin. Moreover, we show that our main constructionprovides a rather simple proof of Nesterenko's linear independencecriterion.

About the authors

Oleg Nikolaevich German

HSE University; Moscow Center for Fundamental and Applied Mathematics

Email: german.oleg@gmail.com
Doctor of physico-mathematical sciences, no status

Nikolai Germanovich Moshchevitin

HSE University; Moscow Center for Fundamental and Applied Mathematics

Email: moshchevitin@rambler.ru
Doctor of physico-mathematical sciences, Professor

References

  1. Ю. В. Нестеренко, “О линейной независимости чисел”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1985, № 1, 46–49
  2. A. Khintchine, “Über eine Klasse linearer Diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195
  3. V. Jarnik, “Zum Khintchineschen “Übertragungssatz””, Trav. Inst. Math. Tbilissi, 3 (1938), 193–216
  4. Y. Bugeaud, M. Laurent, “Exponents of Diophantine approximation”, Diophantine geometry, CRM Series, 4, Ed. Norm., Pisa, 2007, 101–121
  5. Y. Bugeaud, M. Laurent, “On transfer inequalities in Diophantine approximation. II”, Math. Z., 265:2 (2010), 249–262
  6. O. N. German, “Intermediate Diophantine exponents and parametric geometry of numbers”, Acta Arith., 154:1 (2012), 79–101
  7. O. N. German, “On Diophantine exponents and Khintchine's transference principle”, Mosc. J. Comb. Number Theory, 2:2 (2012), 22–51
  8. W. M. Schmidt, L. Summerer, “Diophantine approximation and parametric geometry of numbers”, Monatsh. Math., 169:1 (2013), 51–104
  9. O. N. German, N. G. Moshchevitin, “A simple proof of Schmidt–Summerer's inequality”, Monatsh. Math., 170:3-4 (2013), 361–370
  10. V. Jarnik, “Une remarque sur les approximations diophantiennes lineaires”, Acta Sci. Math. (Szeged), 12 B (1950), 82–86
  11. V. Jarnik, “Contribution à la theorie des approximations diophantiennes lineaires et homogènes”, Czechoslovak Math. J., 4:79 (1954), 330–353
  12. A. Marnat, N. G. Moshchevitin, “An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation”, Mathematika, 66:3 (2020), 818–854
  13. Ngoc Ai Van Nguyen, A. Poëls, D. Roy, “A transference principle for simultaneous rational approximation”, J. Theor. Nombres Bordeaux, 32:2 (2020), 387–402
  14. J. Schleischitz, “On geometry of numbers and uniform rational approximation to the Veronese curve”, Period. Math. Hung., 83:2 (2021), 233–249
  15. J. Schleischitz, “Optimality of two inequalities for exponents of Diophantine approximation”, J. Number Theory, 244 (2023), 169–203
  16. D. Kleinbock, N. Moshchevitin, B. Weiss, “Singular vectors on manifolds and fractals”, Israel J. Math., 245:2 (2021), 589–613
  17. S. Fischler, W. Zudilin, “A refinement of Nesterenko's linear independence criterion with applications to zeta values”, Math. Ann., 347:4 (2010), 739–763
  18. A. Chantanasiri, “On the criteria for linear independence of Nesterenko, Fischler and Zudilin”, Chamchuri J. Math., 2:1 (2010), 31–46
  19. S. Fischler, T. Rivoal, “Irrationality exponent and rational approximations with prescribed growth”, Proc. Amer. Math. Soc., 138:3 (2010), 799–808

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 German O.N., Moshchevitin N.G.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».