A solution to the multidimensional additive homological equation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove that, for a finite-dimensional real normed space $V$,every bounded mean zero function $f\in L_\infty([0,1];V)$can be written in the form $f=g\circ T-g$ for some $g\in L_\infty([0,1];V)$and some ergodic invertible measure preserving transformation $T$of $[0,1]$.Our method moreover allows us to choose $g$, for any given $\varepsilon>0$,to be such that $\|g\|_\infty\leq (S_V+\varepsilon)\|f\|_\infty$,where $S_V$ is the Steinitz constant corresponding to $V$.

About the authors

Aleksei Feliksovich Ber

National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics

Email: ber@ucd.uz
Candidate of physico-mathematical sciences, Senior Researcher

Matthijs Borst

Delft University of Technology

Email: m.j.borst@outlook.com

Sander Borst

Centrum voor Wiskunde en Informatica

Email: sander.borst@cwi.nl

Fedor Anatol'evich Sukochev

University of New South Wales, School of Mathematics and Statistics

Email: f.sukochev@unsw.edu.au
Candidate of physico-mathematical sciences, Professor

References

  1. Д. В. Аносов, “Об аддитивном функциональном гомологическом уравнении, связанном с эргодическим поворотом окружности”, Изв. АН СССР. Сер. матем., 37:6 (1973), 1259–1274
  2. А. Н. Колмогоров, “О динамических системах с интегральным инвариантом на торе”, Докл. АН СССР, 93:5 (1953), 763–766
  3. J. Bourgain, “Translation invariant forms on $L^p(G)$ ($1
  4. F. E. Browder, “On the iteration of transformations in noncompact minimal dynamical systems”, Proc. Amer. Math. Soc., 9:5 (1958), 773–780
  5. T. Adams, J. Rosenblatt, “Joint coboundaries”, Dynamical systems, ergodic theory, and probability: in memory of Kolya Chernov, Contemp. Math., 698, Amer. Math. Soc., Providence, RI, 2017, 5–33
  6. T. Adams, J. Rosenblatt, Existence and non-existence of solutions to the coboundary equation for measure preserving systems
  7. A. Ber, M. Borst, F. Sukochev, “Full proof of Kwapien's theorem on representing bounded mean zero functions on $[0,1]$”, Studia Math., 259:3 (2021), 241–270
  8. S. Kwapien, “Linear functionals invariant under measure preserving transformations”, Math. Nachr., 119:1 (1984), 175–179
  9. T. Figiel, N. Kalton, “Symmetric linear functionals on function spaces”, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, 311–332
  10. S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp.
  11. M. I. Kadets, V. M. Kadets, Series in Banach spaces. Conditional and unconditional convergence, Oper. Theory Adv. Appl., 94, Birkhäuser Verlag, Basel, 1997, viii+156 pp.
  12. В. И. Богачев, Основы теории меры, т. 1, 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 544 с., 576 с.
  13. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
  14. E. Steinitz, “Bedingt konvergente Reihen und konvexe Systeme”, J. Reine Angew. Math., 1913:143 (1913), 128–176
  15. В. С. Гринберг, С. В. Севастьянов, “О величине константы Штейница”, Функц. анализ и его прил., 14:2 (1980), 56–57
  16. W. Banaszczyk, “The Steinitz constant of the plane”, J. Reine Angew. Math., 1987:373 (1987), 218–220
  17. W. Banaszczyk, “A note on the Steinitz constant of the Euclidean plane”, C. R. Math. Rep. Acad. Sci. Canada, 12:4 (1990), 97–102
  18. W. Banaszczyk, “The Steinitz theorem on rearrangement of series for nuclear spaces”, J. Reine Angew. Math., 1990:403 (1990), 187–200
  19. I. Barany, V. S. Grinberg, “On some combinatorial questions in finite-dimensional spaces”, Linear Algebra Appl., 41:3 (1981), 1–9
  20. B. Simon, Convexity. An analytic viewpoint, Cambridge Tracts in Math., 187, Cambridge Univ. Press, Cambridge, 2011, x+345 pp.
  21. J. B. Conway, A course in functional analysis, Grad. Texts in Math., 96, 2nd ed., Springer-Verlag, New York, 1990, xvi+399 pp.
  22. G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford Univ. Press, Oxford, 2008, xxii+621 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Ber A.F., Borst M., Borst S., Sukochev F.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).