Maltsev equal-norm tight frames

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A frame in $\mathbb{R}^d$ is a set of $n\geqslant d$ vectors whose linear spancoincides with $\mathbb{R}^d$. A frame is said to be equal-norm if the normsof all its vectors are equal. Tight frames enable one to represent vectorsin $\mathbb{R}^d$ in the form closest to the representation in an orthonormalbasis. Every equal-norm tightframe is a useful tool for constructing efficient computational algorithms. The construction of such frames in $\mathbb{C}^d$ uses the matrix of the discrete Fourier transform, and the first constructions of equal-norm tight frames in $\mathbb{R}^d$ appeared only at the beginning of the 21st century. The present paper shows that Maltsev's note of 1947 was decades ahead of its time and turned out to be missed by the experts in frame theory, and Maltsev should be credited for the world's first design of an equal-norm tight frame in $\mathbb{R}^d$. Our main purpose is to show the historical significance of Maltsev's discovery.We consider his paper from the point of view of the modern theory of frames in finite-dimensional spaces.Using the Naimark projectors and other operator methods, we study important frame-theoretic properties of the Maltsevconstruction, such as the equality of moduli of pairwise scalar products (equiangularity) and the presence of full spark, that is, the linear independence ofany subset of $d$ vectors in the frame.

About the authors

Sergey Yakovlevich Novikov

Samara National Research University

Email: nvks@ssau.ru
Doctor of physico-mathematical sciences, Professor

Victoria Vladimirovna Sevost'yanova

Samara National Research University

Email: berlua@mail.ru

References

  1. O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2003, xxii+440 pp.
  2. М. А. Наймарк, “Спектральные функции симметрического оператора”, Изв. АН СССР. Сер. матем., 4:3 (1940), 277–318
  3. Б. С. Кашин, Т. Ю. Куликова, “Замечание об описании фреймов общего вида”, Матем. заметки, 72:6 (2002), 941–945
  4. С. Я. Новиков, “Бесселевы последовательности как проекции ортогональных систем”, Матем. заметки, 81:6 (2007), 893–903
  5. А. И. Мальцев, “Замечание к работе А. Н. Колмогорова, А. А. Петрова и Ю. М. Смирнова “Одна формула Гаусса из теории наименьших квадратов””, Изв. АН СССР. Сер. матем., 11:6 (1947), 567–568
  6. А. Н. Колмогоров, А. А. Петров, Ю. М. Смирнов, “Одна формула Гаусса из теории метода наименьших квадратов”, Изв. АН СССР. Сер. матем., 11:6 (1947), 561–566
  7. P. G. Casazza, M. T. Leon, “Existence and construction of finite tight frames”, J. Concr. Appl. Math., 4:3 (2006), 277–289
  8. М. С. Беспалов, “Собственные подпространства дискретного преобразования Уолша”, Пробл. передачи информ., 46:3 (2010), 60–79
  9. M. Fickus, J. Jasper, D. G. Mixon, J. Peterson, “Hadamard equiangular tight frames”, Appl. Comput. Harmon. Anal., 50:1 (2021), 281–302
  10. M. Elad, Sparse and redundant representations. From theory to applications in signal and image processing, Springer, New York, 2010, xx+376 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Novikov S.Y., Sevost'yanova V.V.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).