On a spectral sequence for the action of the Torelli group of genus $3$ on the complex of cycles
- Authors: Gaifullin A.A.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 85, No 6 (2021)
- Pages: 27-103
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133860
- DOI: https://doi.org/10.4213/im9116
- ID: 133860
Cite item
Abstract
About the authors
Alexander Aleksandrovich Gaifullin
Steklov Mathematical Institute of Russian Academy of Sciences
Email: agaif@mi-ras.ru
Doctor of physico-mathematical sciences, no status
References
- D. McCullough, A. Miller, “The genus $2$ Torelli group is not finitely generated”, Topology Appl., 22:1 (1986), 43–49
- G. Mess, “The Torelli groups for genus $2$ and $3$ surfaces”, Topology, 31:4 (1992), 775–790
- D. Johnson, “The structure of the Torelli group. I. A finite set of generators for $mathcal{I}$”, Ann. of Math. (2), 118:3 (1983), 423–442
- R. Kirby, “Problems in low-dimensional topology”, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2.2, Amer. Math. Soc., Providence, RI; International Press, Cambridge, MA, 1997, 35–473
- M. Bestvina, K.-U. Bux, D. Margalit, “The dimension of the Torelli group”, J. Amer. Math. Soc., 23:1 (2010), 61–105
- T. E. Brendle, B. Farb, “The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group”, Math. Ann., 338:1 (2007), 33–53
- R. Hain, “The rational cohomology ring of the moduli space of abelian $3$-folds”, Math. Res. Lett., 9:4 (2002), 473–491
- T. Akita, “Homological infiniteness of Torelli groups”, Topology, 40:2 (2001), 213–221
- A. A. Gaifullin, On infinitely generated homology of Torelli groups
- D. Johnson, “The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves”, Topology, 24:2 (1985), 113–126
- A. A. Gaifullin, On the top homology group of Johnson kernel
- D. Johnson, “The structure of the Torelli group. III. The abelianization of $mathscr{I}$”, Topology, 24:2 (1985), 127–144
- R. Hain, “Infinitesimal presentations of the Torelli groups”, J. Amer. Math. Soc., 10:3 (1997), 597–651
- M. Kassabov, A. Putman, “Equivariant group presentations and the second homology group of the Torelli group”, Math. Ann., 376:1-2 (2020), 227–241
- J. Miller, P. Patzt, J. C. H. Wilson, “Central stability for the homology of congruence subgroups and the second homology of Torelli groups”, Adv. Math., 354 (2019), 106740, 45 pp.
- A. Kupers, O. Randal-Williams, “On the cohomology of Torelli groups”, Forum Math. Pi, 8 (2020), e7, 83 pp.
- A. Hatcher, D. Margalit, “Generating the Torelli group”, Enseign. Math. (2), 58:1-2 (2012), 165–188
- B. Farb, D. Margalit, A primer on mapping class groups, Princeton Math. Ser., 49, Princeton Univ. Press, Princeton, NJ, 2012, xiv+472 pp.
- N. V. Ivanov, Subgroups of Teichmüller modular groups, Transl. Math. Monogr., 115, Amer. Math. Soc., Providence, RI, 1992, xii+127 pp.
- К. С. Браун, Когомологии групп, Наука, М., 1987, 384 с.
- L. Evens, The cohomology of groups, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1991, xii+159 pp.
- A. Putman, “Cutting and pasting in the Torelli group”, Geom. Topol., 11 (2007), 829–865
- J. S. Birman, A. Lubotzky, J. McCarthy, “Abelian and solvable subgroups of the mapping class groups”, Duke Math. J., 50:4 (1983), 1107–1120
- J. S. Birman, R. Craggs, “The $mu$-invariant of $3$-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented $2$-manifold”, Trans. Amer. Math. Soc., 237 (1978), 283–309
- D. Johnson, “Quadratic forms and the Birman–Craggs homomorphisms”, Trans. Amer. Math. Soc., 261:1 (1980), 235–254
- А. А. Гайфуллин, “О продолжении гомоморфизма Бирман–Крэггса–Джонсона”, УМН, 72:6(438) (2017), 201–202
- S. Morita, “On the structure of the Torelli group and the Casson invariant”, Topology, 30:4 (1991), 603–621
- В. Магнус, А. Каррас, Д. Солитэр, Комбинаторная теория групп. Представление групп в терминах образующих и соотношений, Наука, М., 1974, 455 с.
Supplementary files
