Explicit minimizers of some non-local anisotropic energies: a short proof

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper we consider non-local energies defined on probability measures in the plane, given by a convolutioninteraction term plus a quadratic confinement. The interaction kernel is $-\log|z|+\alpha x^2/|z|^2$, $z=x+iy$, with $-1<\alpha<1$. This kernel is anisotropic except for the Coulomb case $\alpha=0$. We present a short compact proofof the known surprising fact that the unique minimizer of the energy is the normalized characteristic function of the domainenclosed by an ellipse with horizontal semi-axis $\sqrt{1-\alpha}$ and vertical semi-axis $\sqrt{1+\alpha}$.Letting $\alpha \to 1^-$, we find that the semicircle law on the vertical axis is the unique minimizer of the correspondingenergy, a result related to interacting dislocations, and previously obtained by some of the authors. We devote thefirst sections of this paper to presenting some well-known background material in the simplest way possible, so thatreaders unfamiliar with the subject find the proofs accessible.

About the authors

Joan Eugeni Mateu

Universitat Autònoma de Barcelona; Barcelona Graduate School of Mathematics

Maria Giovanna Mora

Dipartimento di Matematica "Felice Casorati", Università di Pavia

Email: mariagiovanna.mora@unipv.it

Luca Rondi

Dipartimento di Matematica "Federigo Enriques", Università degli Studi di Milano

Email: luca.rondi@unimi.it
PhD

Lucia Scardia

Department of Mathematics, Heriot Watt University

Email: l.scardia@hw.ac.uk

Joan Melenchón Verdera

Universitat Autònoma de Barcelona; Barcelona Graduate School of Mathematics

Email: verdera@mat.uab.es

References

  1. J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The ellipse law: Kirchhoff meets dislocations”, Comm. Math. Phys., 373:2 (2020), 507–524
  2. O. Frostman, Potentiel d'equilibre et capacite des ensembles avec quelques applications à la theorie des fonctions, Medd. Lunds Univ. Mat. Sem., 3, 1935, 118 pp.
  3. M. G. Mora, L. Rondi, L. Scardia, “The equilibrium measure for a nonlocal dislocation energy”, Comm. Pure Appl. Math., 72:1 (2019), 136–158
  4. J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The equilibrium measure for an anisotropic nonlocal energy”, Calc. Var. Partial Differential Equations (to appear)
  5. J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “A maximum-principle approach to the minimisation of a nonlocal dislocation energy”, Math. Eng., 2:2 (2020), 253–263
  6. И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
  7. E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp.
  8. Н. С. Ландкоф, Основы современной теории потенциала, Наука, М., 1966, 515 с.
  9. T. Hmidi, J. Mateu, J. Verdera, “On rotating doubly connected vortices”, J. Differential Equations, 258:4 (2015), 1395–1429
  10. R. J. Duffin, “The maximum principle and biharmonic functions”, J. Math. Anal. Appl., 3:3 (1961), 399–405
  11. J. Verdera, “$L^2$-boundedness of the Cauchy integral and Menger curvature”, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000), Contemp. Math., 277, Amer. Math. Soc., Providence, RI, 2001, 139–158
  12. S. Hofmann, M. Mitrea, M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains”, Int. Math. Res. Not. IMRN, 2010:14 (2010), 2567–2865
  13. X. Tolsa, “Jump formulas for singular integrals and layer potentials on rectifiable sets”, Proc. Amer. Math. Soc., 148:11 (2020), 4755–4767

Copyright (c) 2021 Mateu J.E., Mora M.G., Rondi L., Scardia L., Verdera J.M.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies