Explicit minimizers of some non-local anisotropic energies: a short proof

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper we consider non-local energies defined on probability measures in the plane, given by a convolutioninteraction term plus a quadratic confinement. The interaction kernel is $-\log|z|+\alpha x^2/|z|^2$, $z=x+iy$, with $-1<\alpha<1$. This kernel is anisotropic except for the Coulomb case $\alpha=0$. We present a short compact proofof the known surprising fact that the unique minimizer of the energy is the normalized characteristic function of the domainenclosed by an ellipse with horizontal semi-axis $\sqrt{1-\alpha}$ and vertical semi-axis $\sqrt{1+\alpha}$.Letting $\alpha \to 1^-$, we find that the semicircle law on the vertical axis is the unique minimizer of the correspondingenergy, a result related to interacting dislocations, and previously obtained by some of the authors. We devote thefirst sections of this paper to presenting some well-known background material in the simplest way possible, so thatreaders unfamiliar with the subject find the proofs accessible.

About the authors

Joan Eugeni Mateu

Universitat Autònoma de Barcelona; Barcelona Graduate School of Mathematics

Maria Giovanna Mora

Dipartimento di Matematica "Felice Casorati", Università di Pavia

Email: mariagiovanna.mora@unipv.it

Luca Rondi

Dipartimento di Matematica "Federigo Enriques", Università degli Studi di Milano

Email: luca.rondi@unimi.it
PhD

Lucia Scardia

Department of Mathematics, Heriot Watt University

Email: l.scardia@hw.ac.uk

Joan Melenchón Verdera

Universitat Autònoma de Barcelona; Barcelona Graduate School of Mathematics

Email: verdera@mat.uab.es

References

  1. J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The ellipse law: Kirchhoff meets dislocations”, Comm. Math. Phys., 373:2 (2020), 507–524
  2. O. Frostman, Potentiel d'equilibre et capacite des ensembles avec quelques applications à la theorie des fonctions, Medd. Lunds Univ. Mat. Sem., 3, 1935, 118 pp.
  3. M. G. Mora, L. Rondi, L. Scardia, “The equilibrium measure for a nonlocal dislocation energy”, Comm. Pure Appl. Math., 72:1 (2019), 136–158
  4. J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The equilibrium measure for an anisotropic nonlocal energy”, Calc. Var. Partial Differential Equations (to appear)
  5. J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “A maximum-principle approach to the minimisation of a nonlocal dislocation energy”, Math. Eng., 2:2 (2020), 253–263
  6. И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
  7. E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp.
  8. Н. С. Ландкоф, Основы современной теории потенциала, Наука, М., 1966, 515 с.
  9. T. Hmidi, J. Mateu, J. Verdera, “On rotating doubly connected vortices”, J. Differential Equations, 258:4 (2015), 1395–1429
  10. R. J. Duffin, “The maximum principle and biharmonic functions”, J. Math. Anal. Appl., 3:3 (1961), 399–405
  11. J. Verdera, “$L^2$-boundedness of the Cauchy integral and Menger curvature”, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000), Contemp. Math., 277, Amer. Math. Soc., Providence, RI, 2001, 139–158
  12. S. Hofmann, M. Mitrea, M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains”, Int. Math. Res. Not. IMRN, 2010:14 (2010), 2567–2865
  13. X. Tolsa, “Jump formulas for singular integrals and layer potentials on rectifiable sets”, Proc. Amer. Math. Soc., 148:11 (2020), 4755–4767

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Mateu J.E., Mora M.G., Rondi L., Scardia L., Verdera J.M.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».