On the Newton polyhedron of a Jacobian pair

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We introduce and describe the Newton polyhedron related to a “minimal” counterexample to the Jacobian conjecture. This description allows us to obtain a sharper estimate for the geometric degree of the polynomial mapping given by a Jacobian pair and to give a new proof in the case of the Abhyankar's two characteristic pairs.

About the authors

Leonid Grigor'evich Makar-Limanov

Wayne State University, Department of Mathematics; Faculty of Mathematics and Computer Science, Weizmann Institute of Science

Email: lml@math.wayne.edu

References

  1. O.-H. Keller, “Ganze Cremona-Transformationen”, Monatsh. Math. Phys., 47:1 (1939), 299–306
  2. S. S. Abhyankar, Lectures on expansion techniques in algebraic geometry, Tata Inst. Fund. Res. Lectures on Math. and Phys., 57, Tata Inst. Fund. Res., Bombay, 1977, iv+168 pp.
  3. S. S. Abhyankar, “Some remarks on the Jacobian question”, With notes by M. van der Put and W. Heinzer. Updated by A. Sathaye, Proc. Indian Acad. Sci. Math. Sci., 104:3 (1994), 515–542
  4. H. Appelgate, H. Onishi, “The Jacobian conjecture in two variables”, J. Pure Appl. Algebra, 37:3 (1985), 215–227
  5. C. Valqui, J. A. Guccione, J. J. Guccione, “On the shape of possible counterexamples to the Jacobian conjecture”, J. Algebra, 471 (2017), 13–74
  6. R. C. Heitmann, “On the Jacobian conjecture”, J. Pure Appl. Algebra, 64:1 (1990), 35–72
  7. A. Joseph, “The Weyl algebra – semisimple and nilpotent elements”, Amer. J. Math., 97:3 (1975), 597–615
  8. J. Lang, “Jacobian pairs. II”, J. Pure Appl. Algebra, 74:1 (1991), 61–71
  9. J. H. McKay, Stuart Sui Sheng Wang, “A note on the Jacobian condition and two points at infinity”, Proc. Amer. Math. Soc., 111:1 (1991), 35–43
  10. T. T. Moh, “On the Jacobian conjecture and the configurations of roots”, J. Reine Angew. Math., 340 (1983), 140–212
  11. M. Nagata, “Two-dimensional Jacobian conjecture.”, Algebra and topology 1988 (Taejŏn, 1988), Korea Inst. Tech., Taejŏn, 1988, 77–98
  12. M. Nagata, “Some remarks on the two-dimensional Jacobian conjecture”, Chinese J. Math., 17:1 (1989), 1–7
  13. A. Nowicki, Y. Nakai, “On Appelgate–Onishi's lemmas”, J. Pure Appl. Algebra, 51:3 (1988), 305–310
  14. A. Nowicki, Y. Nakai, “Correction to “On Appelgate–Onishi's lemmas””, J. Pure Appl. Algebra, 58:1 (1989), 101
  15. M. Oka, “On the boundary obstructions to the Jacobian problem”, Kodai Math. J., 6:3 (1983), 419–433
  16. P. Cassou-Nogues, “Newton trees at infinity of algebraic curves”, Affine algebraic geometry, The Russell Festschrift, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 1–19
  17. L. Makar-Limanov, “On the Newton polygon of a Jacobian mate”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 469–476
  18. Б. Л. ван дер Варден, Алгебра, т. 1, Наука, М., 1976
  19. I. Newton, “De methodis serierum et fluxionum”, The mathematical papers of Isaac Newton, v. 3, Cambridge Univ. Press, Cambridge, London–New York, 43–71
  20. B. R. Peskin, D. R. Richman, “A method to compute minimal polynomials”, SIAM J. Algebraic Discrete Methods, 6:2 (1985), 292–299
  21. D. R. Richman, “On the computation of minimal polynomials”, J. Algebra, 103:1 (1986), 1–17
  22. L. Makar-Limanov, “A new proof of the Abhyankar–Moh–Suzuki theorem via a new algorithm for the polynomial dependence”, J. Algebra Appl., 14:9 (2015), 1540001, 12 pp.
  23. Yitang Zhang, The Jacobian conjecture and the degree of field extension, Thesis (Ph.D.), Purdue Univ., 1991, 24 pp.
  24. А. В. Домрина, “О четырехлистных полиномиальных отображениях $mathbb C^2$. Общий случай”, Матем. заметки, 65:3 (1999), 464–467
  25. А. В. Домрина, “О четырехлистных полиномиальных отображениях $mathbb C^2$. II. Общий случай”, Изв. РАН. Сер. матем., 64:1 (2000), 3–36
  26. А. В. Домрина, С. Ю. Оревков, “О четырехлистных полиномиальных отображениях $mathbb C^2$. I. Случай неприводимой кривой ветвления”, Матем. заметки, 64:6 (1998), 847–862
  27. С. Ю. Оревков, “О трехлистных полиномиальных отображениях $mathbf C^2$”, Изв. АН СССР. Сер. матем., 50:6 (1986), 1231–1240
  28. I. Sigray, Jacobian trees and their applications, Thesis (Ph.D.), Eötvös Lorand Univ. (ELTE), Budapest, 2008, 66 pp.
  29. H. .{Z}ola̧dek, “An application of Newton–Puiseux charts to the Jacobian problem”, Topology, 47:6 (2008), 431–469

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Makar-Limanov L.G.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».