Plane algebraic curves in fancy balls
- Authors: Kruzhilin N.G.1, Orevkov S.Y.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 85, No 3 (2021)
- Pages: 73-88
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133850
- DOI: https://doi.org/10.4213/im9081
- ID: 133850
Cite item
Abstract
Keywords
About the authors
Nikolai Georgievich Kruzhilin
Steklov Mathematical Institute of Russian Academy of Sciences
Email: kruzhil@mi-ras.ru
Doctor of physico-mathematical sciences
Stepan Yur'evich Orevkov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: orevkov@math.ups-tlse.fr
Candidate of physico-mathematical sciences, Senior Researcher
References
- M. Boileau, L. Rudolph, “Nœuds non concordants à un $mathbb{C}$-bord”, Vietnam J. Math., 23 (1995), 13–28
- L. Rudolph, “Plane curves in fancy balls”, Enseign. Math. (2), 31:1-2 (1985), 81–84
- M. Boileau, S. Orevkov, “Quasi-positivite d'une courbe analytique dans une boule pseudo-convexe”, C. R. Acad. Sci. Paris Ser. I Math., 332:9 (2001), 825–830
- L. Rudolph, “Algebraic functions and closed braids”, Topology, 22:2 (1983), 191–201
- K. Hayden, “Minimal braid representatives of quasipositive links”, Pacific J. Math., 295:2 (2018), 421–427
- P. B. Kronheimer, T. S. Mrowka, “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1:6 (1994), 797–808
- С. Ю. Оревков, “Квазиположительные зацепления и связные суммы”, Функц. анализ и его прил., 54:1 (2020), 81–86
- R. Nirenberg, R. O. Wells, “Approximation theorems on differentiable submanifolds of a complex manifold”, Trans. Amer. Math. Soc., 142 (1969), 15–35
- С. Ю. Немировский, “Комплексный анализ и дифференциальная топология на комплексных поверхностях”, УМН, 54:4(328) (1999), 47–74
- C. Livingston, A. H. Moore, LinkInfo: table of link invariants, June 17, 2020
- R. Fintushel, R. J. Stern, “Immersed spheres in 4-manifolds and the immersed Thom conjecture”, Turkish J. Math., 19:2 (1995), 145–157
- G. Mikhalkin, “Adjunction inequality for real algebraic curves”, Math. Res. Lett., 4:1 (1997), 45–52
- D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., 110, Princeton Univ. Press, Princeton, NJ, 1985, vii+173 pp.
- P. M. Gilmer, S. Yu. Orevkov, “Signatures of real algebraic curves via plumbing diagrams”, J. Knot Theory Ramifications, 27:3 (2018), 1840003, 33 pp.
- C. Livingston, A. H. Moore, KnotInfo: table of knots, June 17, 2020
- J. Franks, R. F. Williams, “Braids and the Jones polynomial”, Trans. Amer. Math. Soc., 303:1 (1987), 97–108
- H. R. Morton, “Seifert circles and knot polynomials”, Math. Proc. Cambridge Philos. Soc., 99:1 (1986), 107–109
Supplementary files
