Symmetries of a two-dimensional continued fraction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We describe the symmetry group of a multidimensional continued fraction. As a multidimensional generalization of continued fractions we consider Klein polyhedra. We distinguish two types of symmetries: Dirichlet symmetries, which correspond to the multiplication by units of the respective extension of $\mathbb{Q}$, and so-called palindromic symmetries. The main result is a criterion for a two-dimensional continued fraction to have palindromic symmetries, which is analogous to the well-known criterion for the continued fraction of a quadratic irrationality to have a symmetric period.

About the authors

Oleg Nikolaevich German

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Email: german.oleg@gmail.com
Doctor of physico-mathematical sciences, no status

Ibragim Aslanovich Tlyustangelov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Email: ibragim-tls@yandex.ru
Candidate of physico-mathematical sciences, no status

References

  1. E. Galois, “Analyse algebrique. Demonstration d'un theorème sur les fractions continues periodiques”, Ann. Math. Pures Appl. [Ann. Gergonne], 19 (1828/29), 294–301
  2. A.-M. Legendre, Theorie des nombres, v. 1, 2, 3 ed., Firmin Didot Frères, Libraires, Paris, 1830, xxiv+396 pp., xv+463 pp.
  3. M. Kraitchik, Theorie des nombres, v. 2, Analyse indeterminee du second degre et factorisation, Gauthier-Villars, Paris, 1926, iv+252 pp.
  4. O. Perron, Die Lehre von den Kettenbrüchen, v. 1, Elementare Kettenbrüche, 3te Aufl., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954, vi+194 pp.
  5. O. N. German, I. A. Tlyustangelov, “Palindromes and periodic continued fractions”, Mosc. J. Comb. Number Theory, 6:2-3 (2016), 233–252
  6. Е. И. Коркина, “Двумерные цепные дроби. Самые простые примеры”, Особенности гладких отображений с дополнительными структурами, Сборник статей, Тр. МИАН, 209, Наука, Физматлит, М., 1995, 143–166
  7. O. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp.
  8. J.-O. Moussafir, “Convex hulls of integral points”, Теория представлений, динамические системы, комбинаторные и алгоритмические методы. V, Зап. науч. сем. ПОМИ, 266, ПОМИ, СПб., 2000, 188–217
  9. О. Н. Герман, “Паруса и норменные минимумы решеток”, Матем. сб., 196:3 (2005), 31–60
  10. O. N. German, “Klein polyhedra and lattices with positive norm minima”, J. Theor. Nombres Bordeaux, 19:1 (2007), 175–190
  11. О. Н. Герман, Е. Л. Лакштанов, “О многомерном обобщении теоремы Лагранжа для цепных дробей”, Изв. РАН. Сер. матем., 72:1 (2008), 51–66
  12. А. В. Устинов, “Трехмерные цепные дроби и суммы Клостермана”, УМН, 70:3(423) (2015), 107–180
  13. O. Karpenkov, A. Ustinov, “Geometry and combinatoric of Minkowski–Voronoi 3-dimensional continued fractions”, J. Number Theory, 176 (2017), 375–419
  14. З. И. Боревич, И. Р. Шафаревич, Теория чисел, Наука, М., 1964, 566 с.
  15. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992, xiv+291 pp.

Copyright (c) 2021 German O.N., Tlyustangelov I.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies