Tau functions of solutions of soliton equations
- 作者: Domrin A.V.1,2,3
-
隶属关系:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center
- Moscow Center for Fundamental and Applied Mathematics
- 期: 卷 85, 编号 3 (2021)
- 页面: 30-51
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133842
- DOI: https://doi.org/10.4213/im9058
- ID: 133842
如何引用文章
详细
作者简介
Andrei Domrin
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center; Moscow Center for Fundamental and Applied Mathematics
Email: domrin@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
参考
- А. В. Домрин, “Мероморфное продолжение решений солитонных уравнений”, Изв. РАН. Сер. матем., 74:3 (2010), 23–44
- G. Wilson, “The $tau$-functions of the $mathfrak g$AKNS equations”, Integrable systems, The Verdier memorial conference (Luminy, 1991), Progr. Math., 115, Birkhäuser Boston, Boston, MA, 1993, 131–145
- R. Hirota, The direct method in soliton theory, Cambridge Tracts in Math., 155, Cambridge Univ. Press, Cambridge, 2004, xii+200 pp.
- M. Kashiwara, T. Miwa, “The $tau$ function of the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. I”, Proc. Japan Acad. Ser. A Math. Sci., 57:7 (1981), 342–347
- M. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifolds”, Random systems and dynamical systems (Kyoto Univ., Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto Univ., Research Institute for Mathematical Sciences, Kyoto, 1981, 30–46
- G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Etudes Sci. Publ. Math., 61 (1985), 5–65
- J. Dorfmeister, “Weighted $ell_1$-Grassmannians and Banach manifolds of solutions of the KP-equation and the KdV-equation”, Math. Nachr., 180 (1996), 43–73
- M. J. Dupre, J. F. Glazebrook, E. Previato, “Differential algebras with Banach-algebra coefficients. II: The operator cross-ratio tau-function and the Schwarzian derivative”, Complex Anal. Oper. Theory, 7:6 (2013), 1713–1734
- M. Cafasso, Chao-Zhong Wu, “Tau functions and the limit of block Toeplitz determinants”, Int. Math. Res. Not. IMRN, 2015:20 (2015), 10339–10366
- Chuu-Lian Terng, K. Uhlenbeck, “Tau functions and Virasoro actions for soliton hierarchies”, Comm. Math. Phys., 342:1 (2016), 117–150
- А. Ньюэлл, Солитоны в математике и физике, Мир, М., 1989, 326 с.
- R. Carroll, “On the determinant theme for tau functions, Grassmannians, and inverse scattering”, Inverse scattering and applications (Univ. of Massachusetts, Amherst, MA, 1990), Contemp. Math., 122, Amer. Math. Soc., Providence, RI, 1991, 23–28
- P. D. Lax, Functional analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience [John Wiley & Sons], New York, 2002, xx+580 pp.
- A. Pietsch, History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA, 2007, xxiv+855 pp.
- I. Gohberg, S. Coldberg, N. Krupnik, Traces and determinants of linear operators, Oper. Theory Adv. Appl., 116, Birkhäuser Verlag, Basel, 2000, x+258 pp.
- Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, т. 1, 2, 2-е изд., Физматгиз, М., 1963, 343 с., 516 с.
- Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.
- А. Ф. Леонтьев, Целые функции. Ряды экспонент, Наука, М., 1983, 176 с.
- H. Widom, “On the limit of block Toeplitz determinants”, Proc. Amer. Math. Soc., 50 (1975), 167–173
- B. Malgrange, “Deformations isomonodromiques, forme de Liouville, fonction $tau$”, Ann. Inst. Fourier (Grenoble), 54:5 (2004), 1371–1392
- А. В. Домрин, “Замечания о локальном варианте метода обратной задачи рассеяния”, Комплексный анализ и приложения, Сборник статей, Тр. МИАН, 253, Наука, МАИК «Наука/Интерпериодика», М., 2006, 46–60
- А. В. Комлов, “О полюсах пикаровских потенциалов”, Тр. ММО, 71, УРСС, М., 2010, 270–282
- J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240
- Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход в теории солитонов, Наука, М., 1986, 528 с.
补充文件
