Bogolyubov's theorem for a controlled system related to a variational inequality

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the problem of minimizing an integral functional on the solutions of a controlled systemdescribed by a non-linear differential equation in a separable Banach space and a variational inequality.The variational inequality determines a hysteresis operator whose input is a trajectory of the controlled system andwhose output occurs in the right-hand side of the differential equation, in the constraint on the control, and in the functionalto be minimized. The constraint on the control is a multivalued map with closed non-convex values and the integrandis a non-convex function of the control. Along with the original problem, we consider the problem of minimizing theintegral functional with integrand convexified with respect to the control, on the solutions of the controlled systemwith convexified constraints on the control (the relaxed problem).By a solution of the controlled system we mean a triple: the output of the hysteresis operator, the trajectory,and the control. We establish a relation between the minimization problem and the relaxed problem. This relationis an analogue of Bogolyubov's classical theorem in the calculus of variations. We also study the relation betweenthe solutions of the original controlled system and those of the system with convexified constraints on the control.This relation is usually referred to as relaxation. For a finite-dimensional space we prove the existence of an optimalsolution in the relaxed optimization problem.

About the authors

Alexander Alexandrovich Tolstonogov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences

Email: aatol@icc.ru
Doctor of physico-mathematical sciences, Professor

References

  1. N. Bogoliouboff, “Sur quelques methodes nouvelles dans le calcul des variations”, Ann. Math. Pura Appl. (4), 7:1 (1929), 249–271
  2. А. Д. Иоффе, В. М. Тихомиров, Теория экстремальных задач, Наука, М., 1974, 479 с.
  3. И. Экланд, Р. Темам, Выпуклый анализ и вариационные проблемы, Мир, М., 1979, 399 с.
  4. М. А. Красносельский, А. В. Покровский, Системы с гистерезисом, Наука, М., 1983, 272 с.
  5. A. Visintin, Differential models of hysteresis, Appl. Math. Sci., 111, Springer-Verlag, Berlin, 1994, xii+407 pp.
  6. P. Krejči, Hysteresis, convexity and dissipation in hyperbolic equations, GAKUTO Internat. Ser. Math. Sci. Appl., 8, Gakkōtosho Co., Ltd., Tokyo, 1996, viii+211 pp.
  7. A. Alexiewicz, “Linear functionals on Denjoy-integrable functions”, Colloq. Math., 1 (1948), 289–293
  8. А. А. Толстоногов, “Релаксация в невыпуклых задачах оптимального управления, описываемых эволюционными уравнениями первого порядка”, Матем. сб., 190:11 (1999), 135–160
  9. А. А. Толстоногов, “Теорема Боголюбова при ограничениях, порожденных эволюционной управляемой системой второго порядка”, Изв. РАН. Сер. матем., 67:5 (2003), 177–206
  10. А. А. Толстоногов, “Вариационная устойчивость задач оптимального управления с субдифференциальными операторами”, Матем. сб., 202:4 (2011), 123–160
  11. A. A. Tolstonogov, “Relaxation in nonconvex optimal control problems containing the difference of two subdifferentials”, SIAM J. Control Optim., 54:1 (2016), 175–197
  12. P. Krejči, S. A. Timoshin, A. A. Tolstonogov, “Relaxation and optimisation of a phase-field control system with hysteresis”, Internat. J. Control, 91:1 (2018), 85–100
  13. M. Brokate, P. Krejči, “Optimal control of ODE systems involving a rate independent variational inequality”, Discrete Contin. Dyn. Syst. Ser. B, 18:2 (2013), 331–348
  14. L. Adam, J. Outrata, “On optimal control of a sweeping process coupled with an ordinary differential equation”, Discrete Contin. Dyn. Syst. Ser. B, 19:9 (2014), 2709–2738
  15. C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
  16. A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301
  17. J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp.
  18. J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
  19. А. А. Толстоногов, “Сходимость по Моско интегральных функционалов и ее приложения”, Матем. сб., 200:3 (2009), 119–146
  20. A. A. Tolstonogov, “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288
  21. А. А. Толстоногов, “К теореме Скорца–Драгони для многозначных отображений с переменной областью определения”, Матем. заметки, 48:5 (1990), 109–120
  22. F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182
  23. A. A. Tolstonogov, “Existence and relaxation theorems for extreme continuous selectors of multifunctions with decomposable values”, Topology Appl., 155:8 (2008), 898–905
  24. E. J. Balder, “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Tolstonogov A.A.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).