Bogolyubov's theorem for a controlled system related to a variational inequality
- Authors: Tolstonogov A.A.1
-
Affiliations:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
- Issue: Vol 84, No 6 (2020)
- Pages: 165-196
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133828
- DOI: https://doi.org/10.4213/im8935
- ID: 133828
Cite item
Abstract
We consider the problem of minimizing an integral functional on the solutions of a controlled systemdescribed by a non-linear differential equation in a separable Banach space and a variational inequality.The variational inequality determines a hysteresis operator whose input is a trajectory of the controlled system andwhose output occurs in the right-hand side of the differential equation, in the constraint on the control, and in the functionalto be minimized. The constraint on the control is a multivalued map with closed non-convex values and the integrandis a non-convex function of the control. Along with the original problem, we consider the problem of minimizing theintegral functional with integrand convexified with respect to the control, on the solutions of the controlled systemwith convexified constraints on the control (the relaxed problem).By a solution of the controlled system we mean a triple: the output of the hysteresis operator, the trajectory,and the control. We establish a relation between the minimization problem and the relaxed problem. This relationis an analogue of Bogolyubov's classical theorem in the calculus of variations. We also study the relation betweenthe solutions of the original controlled system and those of the system with convexified constraints on the control.This relation is usually referred to as relaxation. For a finite-dimensional space we prove the existence of an optimalsolution in the relaxed optimization problem.
About the authors
Alexander Alexandrovich Tolstonogov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Email: aatol@icc.ru
Doctor of physico-mathematical sciences, Professor
References
- N. Bogoliouboff, “Sur quelques methodes nouvelles dans le calcul des variations”, Ann. Math. Pura Appl. (4), 7:1 (1929), 249–271
- А. Д. Иоффе, В. М. Тихомиров, Теория экстремальных задач, Наука, М., 1974, 479 с.
- И. Экланд, Р. Темам, Выпуклый анализ и вариационные проблемы, Мир, М., 1979, 399 с.
- М. А. Красносельский, А. В. Покровский, Системы с гистерезисом, Наука, М., 1983, 272 с.
- A. Visintin, Differential models of hysteresis, Appl. Math. Sci., 111, Springer-Verlag, Berlin, 1994, xii+407 pp.
- P. Krejči, Hysteresis, convexity and dissipation in hyperbolic equations, GAKUTO Internat. Ser. Math. Sci. Appl., 8, Gakkōtosho Co., Ltd., Tokyo, 1996, viii+211 pp.
- A. Alexiewicz, “Linear functionals on Denjoy-integrable functions”, Colloq. Math., 1 (1948), 289–293
- А. А. Толстоногов, “Релаксация в невыпуклых задачах оптимального управления, описываемых эволюционными уравнениями первого порядка”, Матем. сб., 190:11 (1999), 135–160
- А. А. Толстоногов, “Теорема Боголюбова при ограничениях, порожденных эволюционной управляемой системой второго порядка”, Изв. РАН. Сер. матем., 67:5 (2003), 177–206
- А. А. Толстоногов, “Вариационная устойчивость задач оптимального управления с субдифференциальными операторами”, Матем. сб., 202:4 (2011), 123–160
- A. A. Tolstonogov, “Relaxation in nonconvex optimal control problems containing the difference of two subdifferentials”, SIAM J. Control Optim., 54:1 (2016), 175–197
- P. Krejči, S. A. Timoshin, A. A. Tolstonogov, “Relaxation and optimisation of a phase-field control system with hysteresis”, Internat. J. Control, 91:1 (2018), 85–100
- M. Brokate, P. Krejči, “Optimal control of ODE systems involving a rate independent variational inequality”, Discrete Contin. Dyn. Syst. Ser. B, 18:2 (2013), 331–348
- L. Adam, J. Outrata, “On optimal control of a sweeping process coupled with an ordinary differential equation”, Discrete Contin. Dyn. Syst. Ser. B, 19:9 (2014), 2709–2738
- C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
- A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301
- J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp.
- J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
- А. А. Толстоногов, “Сходимость по Моско интегральных функционалов и ее приложения”, Матем. сб., 200:3 (2009), 119–146
- A. A. Tolstonogov, “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288
- А. А. Толстоногов, “К теореме Скорца–Драгони для многозначных отображений с переменной областью определения”, Матем. заметки, 48:5 (1990), 109–120
- F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182
- A. A. Tolstonogov, “Existence and relaxation theorems for extreme continuous selectors of multifunctions with decomposable values”, Topology Appl., 155:8 (2008), 898–905
- E. J. Balder, “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404
Supplementary files
