Bogolyubov's theorem for a controlled system related to a variational inequality
- Authors: Tolstonogov A.A.1
-
Affiliations:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
- Issue: Vol 84, No 6 (2020)
- Pages: 165-196
- Section: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133828
- DOI: https://doi.org/10.4213/im8935
- ID: 133828
Cite item
Abstract
About the authors
Alexander Alexandrovich Tolstonogov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences
Email: aatol@icc.ru
Doctor of physico-mathematical sciences, Professor
References
- N. Bogoliouboff, “Sur quelques methodes nouvelles dans le calcul des variations”, Ann. Math. Pura Appl. (4), 7:1 (1929), 249–271
- А. Д. Иоффе, В. М. Тихомиров, Теория экстремальных задач, Наука, М., 1974, 479 с.
- И. Экланд, Р. Темам, Выпуклый анализ и вариационные проблемы, Мир, М., 1979, 399 с.
- М. А. Красносельский, А. В. Покровский, Системы с гистерезисом, Наука, М., 1983, 272 с.
- A. Visintin, Differential models of hysteresis, Appl. Math. Sci., 111, Springer-Verlag, Berlin, 1994, xii+407 pp.
- P. Krejči, Hysteresis, convexity and dissipation in hyperbolic equations, GAKUTO Internat. Ser. Math. Sci. Appl., 8, Gakkōtosho Co., Ltd., Tokyo, 1996, viii+211 pp.
- A. Alexiewicz, “Linear functionals on Denjoy-integrable functions”, Colloq. Math., 1 (1948), 289–293
- А. А. Толстоногов, “Релаксация в невыпуклых задачах оптимального управления, описываемых эволюционными уравнениями первого порядка”, Матем. сб., 190:11 (1999), 135–160
- А. А. Толстоногов, “Теорема Боголюбова при ограничениях, порожденных эволюционной управляемой системой второго порядка”, Изв. РАН. Сер. матем., 67:5 (2003), 177–206
- А. А. Толстоногов, “Вариационная устойчивость задач оптимального управления с субдифференциальными операторами”, Матем. сб., 202:4 (2011), 123–160
- A. A. Tolstonogov, “Relaxation in nonconvex optimal control problems containing the difference of two subdifferentials”, SIAM J. Control Optim., 54:1 (2016), 175–197
- P. Krejči, S. A. Timoshin, A. A. Tolstonogov, “Relaxation and optimisation of a phase-field control system with hysteresis”, Internat. J. Control, 91:1 (2018), 85–100
- M. Brokate, P. Krejči, “Optimal control of ODE systems involving a rate independent variational inequality”, Discrete Contin. Dyn. Syst. Ser. B, 18:2 (2013), 331–348
- L. Adam, J. Outrata, “On optimal control of a sweeping process coupled with an ordinary differential equation”, Discrete Contin. Dyn. Syst. Ser. B, 19:9 (2014), 2709–2738
- C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72
- A. A. Tolstonogov, “Sweeping process with unbounded nonconvex perturbation”, Nonlinear Anal., 108 (2014), 291–301
- J.-P. Aubin, A. Cellina, Differential inclusions. Set-valued maps and viability theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984, xiii+342 pp.
- J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
- А. А. Толстоногов, “Сходимость по Моско интегральных функционалов и ее приложения”, Матем. сб., 200:3 (2009), 119–146
- A. A. Tolstonogov, “Existence and relaxation of solutions for a subdifferential inclusion with unbounded perturbation”, J. Math. Anal. Appl., 447:1 (2017), 269–288
- А. А. Толстоногов, “К теореме Скорца–Драгони для многозначных отображений с переменной областью определения”, Матем. заметки, 48:5 (1990), 109–120
- F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182
- A. A. Tolstonogov, “Existence and relaxation theorems for extreme continuous selectors of multifunctions with decomposable values”, Topology Appl., 155:8 (2008), 898–905
- E. J. Balder, “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal., 11:12 (1987), 1399–1404
Supplementary files
