The main classes of invariant Banach limits
- 作者: Semenov E.M.1, Sukochev F.A.2, Usachev A.S.3
-
隶属关系:
- Voronezh State University
- University of New South Wales, School of Mathematics and Statistics
- Department of Mathematical Sciences, Chalmers University of Technology and the University of Göteborg
- 期: 卷 83, 编号 1 (2019)
- 页面: 140-167
- 栏目: Articles
- URL: https://journals.rcsi.science/1607-0046/article/view/133768
- DOI: https://doi.org/10.4213/im8704
- ID: 133768
如何引用文章
详细
作者简介
Evgenii Semenov
Voronezh State University
Email: nadezhka_ssm@geophys.vsu.ru
Doctor of physico-mathematical sciences, Professor
Fedor Sukochev
University of New South Wales, School of Mathematics and Statistics
Email: f.sukochev@unsw.edu.au
Candidate of physico-mathematical sciences, Professor
Alexandr Usachev
Department of Mathematical Sciences, Chalmers University of Technology and the University of GöteborgCandidate of physico-mathematical sciences, no status
参考
- С. Банах, Теория линейных операций, НИЦ “Регулярная и хаотическая динамика”, Ижевск, 2001, 272 с.
- A. Guichardet, “La trace de Dixmier et autres traces”, Enseign. Math., 61:3-4 (2015), 461–481
- J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Ser. A-B, 262 (1966), A1107–A1108
- M. K. Roychowdhury, “Quantization dimension for Gibbs-like measures on cookie-cutter sets”, Kyoto J. Math., 54:2 (2014), 239–257
- Y. Peres, “Application of Banach limits to the study of sets of integers”, Israel J. Math., 62:1 (1988), 17–31
- R. Nillsen, “A characterisation of ergodic measures”, J. Austral. Math. Soc., 19:2 (1975), 222–224
- D. H. Fremlin, M. Talagrand, “A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means”, Math. Z., 168:2 (1979), 117–142
- Xin Li, Wenxian Shen, Chunyou Sun, “Invariant measures for complex-valued dissipative dynamical systems and applications”, Discrete Contin. Dyn. Syst. Ser. B, 22:6 (2017), 2427–2446
- L. Rotem, “Banach limit in convexity and geometric means for convex bodies”, Electron. Res. Announc. Math. Sci., 23 (2016), 41–51
- K. Matomäki, M. Radziwill, T. Tao, “Sign patterns of the Liouville and Möbius functions”, Forum Math. Sigma, 4 (2016), 14, 44 pp.
- C. Foias, R. M. S. Rosa, R. M. Temam, “Convergence of time averages of weak solutions of the three-dimensional Navier–Stokes equations”, J. Stat. Phys., 160:3 (2015), 519–531
- E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Banach limits and traces on $mathscr L_{1,infty}$”, Adv. Math., 285 (2015), 568–628
- J. B. Deeds, “Summability of vector sequences”, Studia Math., 30 (1968), 361–372
- A. Aizpuru, R. Armario, F. J. Garcia-Pacheco, F. J. Perez-Fernandez, “Banach limits and uniform almost summability”, J. Math. Anal. Appl., 379:1 (2011), 82–90
- Р. Армарио, Ф. Х. Гарсия-Пачеко, Ф. Х. Перес-Фернандес, “О векторнозначных банаховых пределах”, Функц. анализ и его прил., 47:4 (2013), 82–86
- G. Fichtenholz, L. Kantorovitch, “Sur les operations lineaires dans l'espace des fonctions bornees”, Studia Math., 5 (1934), 69–98
- M. Nakamura, S. Kakutani, “Banach limits and the Čech compactification of a countable discrete set”, Proc. Imp. Acad. Tokyo, 19:5 (1943), 224–229
- Ching Chou, “On the size of the set of left invariant means on a semigroup”, Proc. Amer. Math. Soc., 23:1 (1969), 199–205
- E. Alekno, E. Semenov, F. Sukochev, A. Usachev, “On the structure of invariant Banach limits”, C. R. Math. Acad. Sci. Paris, 354:12 (2016), 1195–1199
- Е. А. Алехно, Е. М. Семенов, Ф. А. Сукочев, А. С. Усачев, “Банаховы пределы: инвариантность и функциональные характеристики”, Докл. РАН, 475:1 (2017), 7–9
- E. A. Alekhno, “Superposition operator on the space of sequences almost converging to zero”, Cent. Eur. J. Math., 10:2 (2012), 619–645
- Е. М. Семeнов, Ф. А. Сукочев, А. С. Усачев, “Геометрические свойства множества банаховых пределов”, Изв. РАН. Сер. матем., 78:3 (2014), 177–204
- G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190
- L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74:3 (1967), 308–311
- W. F. Eberlein, “Banach–Hausdorff limits”, Proc. Amer. Math. Soc., 1 (1950), 662–665
- П. Г. Доддс, Б. де Пагтер, А. А. Седаев, Е. М. Семенов, Ф. А. Сукочев, “Сингулярные симметричные функционалы и банаховы пределы с дополнительными свойствами инвариантности”, Изв. РАН. Сер. матем., 67:6 (2003), 111–136
- E. M. Semenov, F. A. Sukochev, “Invariant Banach limits and applications”, J. Funct. Anal., 256:6 (2010), 1517–1541
- A. Carey, J. Phillips, F. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–113
- E. Semenov, F. Sukochev, “Extreme points of the set of Banach limits”, Positivity, 17:1 (2013), 163–170
- Л. В. Канторович, Г. П. Акилов, Функциональный анализ, 2-е изд., Наука, М., 1977, 742 с.
- Ю. С. Очан, Сборник задач и теорем по теории функций действительного переменного, Просвещение, М., 1965, 228 с.
- Е. А. Алехно, Е. М. Семенов, Ф. А. Сукочев, А. С. Усачев, “Порядковые и геометрические свойства банаховых пределов”, Алгебра и анализ, 28:3 (2016), 3–35
- E. A. Alekhno, “On Banach–Mazur limits”, Indag. Math. (N.S.), 26:4 (2015), 581–614
- S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp.
- F. Sukochev, A. Usachev, D. Zanin, “Generalized limits with additional invariance properties and their applications to noncommutative geometry”, Adv. Math., 239 (2013), 164–189
补充文件
