Study of Methods for Anisotropic Plasma-Chemical Etching of Low-k Layers with Protection of the Porous Structure of the Material

Capa

Citar

Texto integral

Resumo

The article summarizes the results of studying the processes of cryogenic plasma etching of low-k dielectrics for use in integrated circuit metallization systems with a node less than 10 nm. The mechanisms of film degradation during plasma etching are considered, and an approach based on the adsorption of condensed plasma-forming gas in pores is studied. Experimental results are presented concerning the development and application of methods for controlling the filling of film pores in situ. The results of studying the parameters of the plasma of bromine-containing gases (CF3Br and C2F4Br2) and the nature of the degradation of the chemical composition of films after etching are presented. For comparison, the same characteristics are given for the previously used CF4 plasma.

Sobre autores

Andrey Miakonkikh

Valiev Institute of Physics and Technology, RAS

Autor responsável pela correspondência
Email: miakonkikh@ftian.ru
Rússia, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Rafael Gaidukasov

Valiev Institute of Physics and Technology, RAS

Email: gaydukasov.r@gmail.com
Rússia, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Vitaly Kuzmenko

Valiev Institute of Physics and Technology, RAS

Email: kuzmenko@ftian.ru
Rússia, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Bibliografia

  1. W. Volksen, R.D. Miller, G. Dubois Chem. Rev., 2010, 110(1), 56. doi: 10.1021/cr9002819.
  2. D. Shamiryan, M.R. Baklanov, S. Vanhaelemeersch, K. Maex J. Vac. Sci. Technol. B, 2002, 20(5), 1923. doi: 10.1116/1.1502699.
  3. A. Rezvanov, A.V. Miakonkikh, A.S. Vishnevskiy, K.V. Rudenko, M.R. Baklanov J. Vac. Sci. Technol. B, 2017, 35(2), 021204. doi: 10.1116/1.4975646.
  4. A. Zotovich, A. Rezvanov, R. Chanson, L. Zhang, N. Hacker, K. Kurchikov, S. Klimin, S.M. Zyryanov, D. Lopaev, E. Gornev, I. Clemente, A. Miakonkikh, K. Maslakov J. Phys. D, 2018, 51(32), 325202. doi: 10.1088/1361-6463/aad06d.
  5. A.A. Rezvanov, A.V. Miakonkikh, D.S. Seregin, A.S. Vishnevskiy, K.A. Vorotilov, K.V. Rudenko, M.R. Baklanov J. Vac. Sci. Technol. A, 2020, 38(3), 033005. doi: 10.1116/1.5143417.
  6. A. Miakonkikh, V. Kuzmenko, A. Efremov, K. Rudenko Vacuum, 2022, 200(5), 110991. doi: 10.1016/j.vacuum.2022.110991.
  7. H.G. Tompkins A User's Guide to Ellipsometry, USA, NY, New York, Academic Press, 1993, 260 pp. doi: 10.1016/C2009-0-22336-1.
  8. V. Rouessac, A. Lee, F. Bosc, J. Durand, A. Ayral Micropor. Mesopor. Mater., 2008, 111(1–3), 417. doi: 10.1016/j.micromeso.2007.08.033.
  9. T. Li, A.J. Senesi, B. Lee Chem. Rev., 2016, 116(18), 11128. doi: 10.1021/acs.chemrev.5b00690.
  10. D.W. Gidley, H.-G. Peng, R.S. Vallery Annu. Rev. Mater. Res., 2006, 36(1), 49. doi: 10.1146/annurev.matsci.36.111904.135144.
  11. A.A. Orlov, A.A. Rezvanov, A.V. Miakonkikh Nanoindustry Russ., 2020, 96(3s), 684. doi: 10.22184/1993-8578.2020.13.3s.684.687.
  12. S. Matsuo Appl. Phys. Lett., 1980, 36(9), 768. doi: 10.1063/1.91651.
  13. M. Engelhardt, S. Schwarz J. Electrochem. Soc., 1987, 134, 1985. doi: 10.1149/1.2100803.
  14. D.L. Flamm, P.L. Cowan, J.A. Golovchenko J. Vac. Sci. Tech., 1980, 17, 1341. doi: 10.1116/1.570667.
  15. D.V. Lopaev, Yu.A. Mankelevich, T.V. Rakhimova, A.I. Zotovich, S.M. Zyryanov, M.R. Baklanov J. Phys. D: Appl. Phys., 2017, 50, 485202. doi: 10.1088/1361-6463/aa92a7.
  16. S.V. Avtaeva, D.K. Otorbaev J. Phys. D: Appl. Phys., 1993, 26, 2148. doi: 10.1088/0022-3727/26/12/009.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Miakonkikh A.V., Gaidukasov R.A., Kuzmenko V.O., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).