Study of Methods for Anisotropic Plasma-Chemical Etching of Low-k Layers with Protection of the Porous Structure of the Material

Cover Page

Cite item

Full Text

Abstract

The article summarizes the results of studying the processes of cryogenic plasma etching of low-k dielectrics for use in integrated circuit metallization systems with a node less than 10 nm. The mechanisms of film degradation during plasma etching are considered, and an approach based on the adsorption of condensed plasma-forming gas in pores is studied. Experimental results are presented concerning the development and application of methods for controlling the filling of film pores in situ. The results of studying the parameters of the plasma of bromine-containing gases (CF3Br and C2F4Br2) and the nature of the degradation of the chemical composition of films after etching are presented. For comparison, the same characteristics are given for the previously used CF4 plasma.

About the authors

Andrey V. Miakonkikh

Valiev Institute of Physics and Technology, RAS

Author for correspondence.
Email: miakonkikh@ftian.ru
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Rafael A. Gaidukasov

Valiev Institute of Physics and Technology, RAS

Email: gaydukasov.r@gmail.com
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Vitaly O. Kuzmenko

Valiev Institute of Physics and Technology, RAS

Email: kuzmenko@ftian.ru
Russian Federation, 34 Nakhimovsky Ave., Moscow, 117218, Russia

References

  1. W. Volksen, R.D. Miller, G. Dubois Chem. Rev., 2010, 110(1), 56. doi: 10.1021/cr9002819.
  2. D. Shamiryan, M.R. Baklanov, S. Vanhaelemeersch, K. Maex J. Vac. Sci. Technol. B, 2002, 20(5), 1923. doi: 10.1116/1.1502699.
  3. A. Rezvanov, A.V. Miakonkikh, A.S. Vishnevskiy, K.V. Rudenko, M.R. Baklanov J. Vac. Sci. Technol. B, 2017, 35(2), 021204. doi: 10.1116/1.4975646.
  4. A. Zotovich, A. Rezvanov, R. Chanson, L. Zhang, N. Hacker, K. Kurchikov, S. Klimin, S.M. Zyryanov, D. Lopaev, E. Gornev, I. Clemente, A. Miakonkikh, K. Maslakov J. Phys. D, 2018, 51(32), 325202. doi: 10.1088/1361-6463/aad06d.
  5. A.A. Rezvanov, A.V. Miakonkikh, D.S. Seregin, A.S. Vishnevskiy, K.A. Vorotilov, K.V. Rudenko, M.R. Baklanov J. Vac. Sci. Technol. A, 2020, 38(3), 033005. doi: 10.1116/1.5143417.
  6. A. Miakonkikh, V. Kuzmenko, A. Efremov, K. Rudenko Vacuum, 2022, 200(5), 110991. doi: 10.1016/j.vacuum.2022.110991.
  7. H.G. Tompkins A User's Guide to Ellipsometry, USA, NY, New York, Academic Press, 1993, 260 pp. doi: 10.1016/C2009-0-22336-1.
  8. V. Rouessac, A. Lee, F. Bosc, J. Durand, A. Ayral Micropor. Mesopor. Mater., 2008, 111(1–3), 417. doi: 10.1016/j.micromeso.2007.08.033.
  9. T. Li, A.J. Senesi, B. Lee Chem. Rev., 2016, 116(18), 11128. doi: 10.1021/acs.chemrev.5b00690.
  10. D.W. Gidley, H.-G. Peng, R.S. Vallery Annu. Rev. Mater. Res., 2006, 36(1), 49. doi: 10.1146/annurev.matsci.36.111904.135144.
  11. A.A. Orlov, A.A. Rezvanov, A.V. Miakonkikh Nanoindustry Russ., 2020, 96(3s), 684. doi: 10.22184/1993-8578.2020.13.3s.684.687.
  12. S. Matsuo Appl. Phys. Lett., 1980, 36(9), 768. doi: 10.1063/1.91651.
  13. M. Engelhardt, S. Schwarz J. Electrochem. Soc., 1987, 134, 1985. doi: 10.1149/1.2100803.
  14. D.L. Flamm, P.L. Cowan, J.A. Golovchenko J. Vac. Sci. Tech., 1980, 17, 1341. doi: 10.1116/1.570667.
  15. D.V. Lopaev, Yu.A. Mankelevich, T.V. Rakhimova, A.I. Zotovich, S.M. Zyryanov, M.R. Baklanov J. Phys. D: Appl. Phys., 2017, 50, 485202. doi: 10.1088/1361-6463/aa92a7.
  16. S.V. Avtaeva, D.K. Otorbaev J. Phys. D: Appl. Phys., 1993, 26, 2148. doi: 10.1088/0022-3727/26/12/009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Miakonkikh A.V., Gaidukasov R.A., Kuzmenko V.O.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).