Alternative Technological Schemes and Processes for the Formation of Ruthenium-Based Multilevel Metallization Structures for ULSI

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Ruthenium thin films were deposited by plasma enhanced atomic layer deposition (PEALD) using Ru(EtCp)2 and oxygen plasma on the modified silicon surface and SiO2/Si substrates. The substrate temperature has a significant impact on film growth. The GXRD and SIMS analysis have shown that at the substrate temperature T=375 °C there is a sharp change in the mechanisms of surface reactions, which leads to a change in the film composition from RuO2 at low temperatures to a pure Ru film at higher temperatures. This was confirmed by measurements of the electrical resistivity of Ru-based films. The lowest surface roughness ~1.5 nm was obtained at a film thickness of 29 nm deposited at 375 °C on a SiO2/Si-substrate. The measured resistivity of the Ru film was 18–19·μΩ∙ cm. Issues regarding the plasma-chemical etching of ruthenium and the spin-on of a low-k dielectric onto arrays of lines are taken into account.

Авторлар туралы

Alexander Rogozhin

Valiev Institute of Physics and Technology, RAS

Хат алмасуға жауапты Автор.
Email: rogozhin@ftian.ru
Ресей, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Olga Permiakova

Valiev Institute of Physics and Technology, RAS

Email: o.permyakova@ftian.ru
Ресей, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Elizaveta Smirnova

Valiev Institute of Physics and Technology, RAS

Email: smirnova@ftian.ru
Ресей, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Andrey Lomov

Valiev Institute of Physics and Technology, RAS

Email: lomov@ftian.ru
Ресей, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Sergei Simakin

Yaroslavl Branch of Valiev Institute of Physics and Technology, RAS

Email: simser@mail.ru
Ресей, 21 Universitetskaya Str., Yaroslavl, 150007, Russia

Konstantin Rudenko

Valiev Institute of Physics and Technology, RAS

Email: rudenko@ftian.ru
Ресей, 34 Nakhimovsky Ave., Moscow, 117218, Russia

Әдебиет тізімі

  1. T. Aaltonen, P. Alén, M. Ritala, M. Leskelä Chem. Vap. Depos., 2003, 9(1), 45. doi: 10.1002/cvde.200290007.
  2. J. Lee, Y.W. Song, K. Lee, Y. Lee, H.K. Jang ECS Trans., 2006, 2(4), 1. doi: 10.1149/1.2204812.
  3. K. Kukli, J. Aarik, A. Aidla, I. Jõgi, T. Arroval, J. Lu, T. Sajavaara, M. Laitinen, A.-A. Kiisler, M. Ritala Thin Solid Films, 2012, 520, 2756. doi: 10.1016/j.tsf.2011.11.088.
  4. S. Yeo, S.-H. Choi, J.-Y. Park, S.-H. Kim, T. Cheon, B.-Y. Lim, S. Kim Thin Solid Films, 2013, 546, 2. doi: 10.1016/j.tsf.2013.03.074.
  5. M.M. Minjauw, J. Dendooven, B. Capon, M. Schaekers, C. Detavernier J. Mater. Chem. C, 2015, 3, 132. doi: 10.1039/C4TC01961J.
  6. K. Kukli, M. Kemell, E. Puukilainen, J. Aarik, A. Aidla, T. Sajavaara, M. Laitinen, M. Tallarida, J. Sundqvist, M. Ritala J. Electrochem. Soc., 2011, 158(3), 158. doi: 10.1149/1.3533387.
  7. N. Leick-Marius PhD Thesis in Applied Physics and Science Education, Technische Universiteit Eindhoven, KN, Eindhoven, 2014, 163 pp. doi: 10.6100/IR782932.
  8. J. Hämäläinen, M. Ritala, M. Leskelä Chem. Mater., 2014, 26(1), 786. doi: 10.1021/cm402221y.
  9. S.-J. Park, W.-H. Kim, H.-B.-R. Lee, W.J. Maeng, H. Kim Microelectron. Eng., 2008, 85(1), 39. doi: 10.1016/j.mee.2007.01.239.
  10. J.-Y. Kim, D.-S. Kil, J.-H. Kim, S.-H. Kwon, J.-H. Ahn, J.-S. Roh, S.-K. Park J. Electrochem. Soc., 2012, 159(6), 560. doi: 10.1149/2.069206jes.
  11. R. Müller, L. Ghazaryan, P. Schenk, S. Wolleb, V. Beladiya, F. Otto, N. Kaiser, A. Tünnermann, T. Fritz, A. Szeghalmi Coatings, 2018, 8, 413. doi: 10.3390/coatings8110413.
  12. J. Lu, J.W. Elam Chem. Mater., 2015, 27(14), 4950. doi: 10.1021/acs.chemmater.5b00818.
  13. O.-K. Kwon, J.-H. Kim, H.-S. Park, S.-W. Kang J. Electrochem. Soc., 2004, 151(2), 109. doi: 10.1149/1.1640633.
  14. A. Rogozhin, A. Miakonkikh, E. Smirnova, A. Lomov, S. Simakin, K. Rudenko Coatings, 2021, 11(2), 117. doi: 10.3390/coatings11020117.
  15. S. Paolillo, D. Wan, F. Lazzarino, N. Rassoul, D. Piumi, Z. Tokei J. Vac. Sci. Technol., 2018, B 36, 03E103-1. doi: 10.1116/1.5022283.
  16. C.C. Hsu, J.W. Coburn, D.B. Graves J. Vac. Sci. Technol. A, 2006, 24(1), 1. doi: 10.1116/1.2121751.
  17. S. Decoster, E. Camerotto, G. Murdoch, F. Lazzarino J. Vac. Sci. Technol. B: Nanotechnol. Microelectron., 2022, 40(3), 032802. doi: 10.1116/6.0001791.
  18. M. Li, B. Popere, P. Trefonas, A.T. Heitsch, R. Limary, R. Katsumata, Y. Zhang, R.A. Segalman В Proc. SPIE 10960, Advances in Patterning Materials and Processes XXXVI (USA, California, San Jose, 25–28 February, 2019), USA, Washington, Bellingham, SPIE, 2019, 109600R. doi: 10.1117/12.2514830.
  19. V. Jousseaume, B. Altemus, C. Ribière, S. Minoret, M. Gottardi, C. Ratin, K. Ichiki, T. Mourier, J. Faguet Microelectron. Eng., 2017, 167, 80. doi: 10.1016/j.mee.2016.11.005.
  20. E.A. Smirnova, A.V. Miakonkikh, A.E. Rogozhin, K.V. Rudenko J. Phys. Conf. Ser., 2020, 1695(1), 012045. doi: 10.1088/1742-6596/1695/1/012045.
  21. S.-S. Yim, D.-J. Lee, K.-S. Kim, S.-H. Kim, T.-S. Yoon, K.-B. Kim J. Appl. Phys., 2008, 103(11), 113509. doi: 10.1063/1.2938052.
  22. S. Somani, A. Mukhopadhyay, C. Musgrave J. Phys. Chem. C, 2011, 115, 11507. doi: 10.1021/jp1059374.
  23. K.V. Rudenko, A.V. Myakon’kikh, A.E. Rogozhin, O.P. Gushchin, V.A. Gvozdev Russ. Microelectron, 2018, 47, 1. doi: 10.1134/S1063739718010055.
  24. M.H. van der Veen, N. Heyler, O.V. Pedreira, I. Ciofi, S. Decoster, V.V. Gonzalez, N. Jourdan, H. Struyf, K. Croes В Proc. 2018 IEEE International Interconnect Technology Conference (USA, CA, Santa Clara, 4–7 June, 2018), USA, New York, IEEE, 2018, pp. 172–174. doi: 10.1109/IITC.2018.8430407.
  25. A.V. Morozkin, Yu.D. Seropegin J. Alloys Compd., 2004, 365, 168. doi: 10.1016/S0925-8388(03)00652-2.
  26. M.L. Foo, Q. Huang, J.W. Lynn, W.L. Lee, T. Klimczuk, I.S. Hagemann, N.P. Ong, R.J. Cava J. Solid State Chem., 2006, 179, 563. doi: 10.1016/j.jssc.2005.11.014.
  27. D.Z. Austin, M.A. Jenkins, D. Allman, S. Hose, D. Price, C.L. Dezelah, J.F. Conley Chem. Mater., 2017, 29(3), 1107. doi: 10.1021/acs.chemmater.6b04251.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Rogozhin A.E., Permiakova O.O., Smirnova E.A., Lomov A.A., Simakin S.G., Rudenko K.V., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).