The use of cartridges for solid-phase extraction in the analysis of organic compounds in natural waters

Cover Page

Cite item

Full Text

Abstract

The article presents the main stages of the solid-phase extraction process as a method of sample preparation of natural thermal and mineral cold waters for subsequent instrumental analysis of medium volatility organic matter by gas chromatography, in combination with mass spectrometry. The use of standard polypropylene cartridges, equipped with frits, has a high risk of the extract contamination with adventitious impurities, which appear as separate peaks on the chromatogram. The paper examines cartridges from two major manufacturers: DSC-18 Supelco and Strata C18-E Phenomenex. Dichloromethane (methylene chloride), used as an eluting solvent, reacts with the walls of the cartridge, resulted in the extraction of n-alkanes and siloxanes from the polypropylene the cartridge is made of. Replacing dichloromethane with methanol, on the one hand, helps to reduce or completely prevent the occurrence of this type of instrumental contamination, but, on the other hand, it carries the risk of ineffective extraction of non-polar organic compounds of medium volatility from the sorbent and causing damage to the capillary gas column, which is used in gas chromatography. The use of homemade glass cartridges, equipped with deactivated glass wool as frits, helps to avoid the above-mentioned disadvantages. Dichloromethane does not extract unwanted impurities from glass walls of homemade cartridges and successfully extracts non-polar and weakly polar organic compounds of medium volatility from the C18 sorbent. The natural water analyzes from a stagnant reservoir in the town of Birobidzhan, when using a homemade glass cartridge have shown in the extract a large number of various organic compounds (115 components) of bacterial and plant origin, with a complete absence of foreign impurities. The dominant compounds include terpenes, heteroaromatic hydrocarbons, oxygen-containing compounds and normal alkanes, the origin of which is associated with biogenic processes. The man-made pollution compounds are presented there by phthalic acid esters, with a relative content of about 9%.

About the authors

V. A. Poturai

Институт комплексного анализа региональных проблем ДВО РАН

Author for correspondence.
Email: poturay85@yandex.ru
ORCID iD: 0000-0002-3357-1737
Russian Federation, ул. Шолом-Алейхема 4, г. Биробиджан, 679016,

References

  1. Abramov V.Yu. Formation organic carbon composition of compound carbon dioxide mineral waters of the Essentuky, Nagutsky deposits. Razvedka i okhrana nedr, 2014, no. 5, pp. 47–51. (In Russ.). EDN: SDVDSV.
  2. Galimov E.M., Sevast’yanov V.S., Kamaleeva A.I., Kuznetsova O.V., Konopleva I.V., Vlasova L.N., Karpov G.A. Hydrocarbons from a volcanic area. Oil seeps in the Uzon caldera, Kamchatka. Geokhimiya, 2015, no. 12, pp. 1059–1068. (In Russ.). doi: 10.7868/S0016752515120043. EDN: UVEMON.
  3. Drugov Yu.S. Probopodgotovka v ekologicheskom analize (Sample preparation in environmental analysis), Yu.S. Drugov, A.A. Rodin. Saint-Petersburg: Anatoliya Publ., 2002. 755 p. (In Russ.).
  4. Klyuev N.A., Brodskii E.S. Modern methods of mass spectrometric analysis of organic compounds. Rossiiskii khimicheskii zhurnal, 2002, vol. 46, no. 4, pp. 57–63. (In Russ.).
  5. Kontorovich A.E., Bortnikova S.B., Kashirtsev V.A., Kostyreva E.A., Fomin A.N., Karpov G.A. Uzon volcano caldera (Kamchatka): a unique natural laboratory of the present-day naphthide genesis. Geologiya i geofizika, 2011, vol. 52, no. 8, pp. 986–990. (In Russ.). EDN: NYJKBH.
  6. Plyusnin A.M., Ukraintsev A.V., Chernyavskii M.K. Organic matter in carbonaceous mineral waters of Vitim plateau and East Sayan, in Geologicheskaya evolyutsiya vzaimodeistviya vody s gornymi porodami (Geological evolution of water-rock interactions). Ulan-Ude: BNTs SB RAS, 2018. pp. 68–71. (In Russ.). EDN: VKRMFO.
  7. Poturay V.A. Organic matter in hydrothermal systems of the Far East of different types and situations. Izvestiya TPU. Inzhiniring georesursov, 2018, vol. 329, no. 11, pp. 6–16. (In Russ.). doi: 10.18799/24131830/2018/11/204.
  8. Poturay V.A. Organic matter in ground- and surface waters in the area of the Annenskii geothermal field, Russian Far East. Geokhimiya, 2017, no. 4, pp. 372–380. (In Russ.). doi: 10.7868/S0016752517020054. EDN: YIUZBL.
  9. Poturay V.A. Organic Matter in Carbonaceous Mineral Waters of the Shmakovka Field, Far East, Russia. Geokhimiya, 2025, vol. 70, no. 5, pp. 392–409. (In Russ.). doi: 10.31857/S0016752525050039.
  10. Poturay V.A. Organic substance in surface waters and groundwters in Kuldur deposit of thermal waters, the Far East of Russia. Vestnik KRAUNTs. Nauki o Zemle, 2013, no. 1 (21), pp. 169–182. (In Russ.). EDN: RCCSRN.
  11. Poturay V.A. Organic Matter and Molecular-Weight Distribution of Hydrocarbons in the Annenskoe Thermal Waters (Far East, Russia). Geologiya i geofizika, 2022, vol. 63, no. 10, pp. 1352–1368. (In Russ.). doi: 10.15372/GiG2021150. EDN: TITPJR.
  12. Poturay V.A. Application of solid-phase extraction method in the study of organic matter in hydrothermal systems of the Russian Far East. Regional’nye problemy, 2024, vol. 27, no. 4, pp. 30–48. (In Russ.). doi: 10.31433/2618-9593-2024-27-4-30-48. EDN: QRIWGK.
  13. Poturay V.A. Problems of instrumental analysis of the composition of organic compounds in natural waters. Regional’nye problemy, 2024, vol. 27, no. 3, pp. 74–76. (In Russ.). doi: 10.31433/2618-9593-2024-27-3-74-76. EDN: FNDSSN.
  14. Poturay V.A. Composition and distribution of n-paraffines in nitrogen thermal waters of the Russian Far East. Tikhookeanskaya geologiya, 2017, vol. 36, no. 4, pp. 109–119. (In Russ.). EDN: ZFTTBZ.
  15. Poturay V.A. Organic matter in cold underground waters of the Amur region’s nitrogen thermal springs. Regional’nye problemy, 2016, vol. 19, no. 4, pp. 59–66. (In Russ.). EDN: UZKVNO.
  16. Poturay V.A., Strochinskaja S.S., Kompanichenko V.N. Complex biogeochemical characteristics of the Tumnin springs thermal water. Regional’nye problemy, 2018, vol. 21, no. 1, pp. 22–30. (In Russ.). EDN: YRPFZO.
  17. Raznitsin Yu.N., Savel’eva G.N., Fedonkin M.A. The hydrocarbon potential of paleo- and modern suprasubduction zones: tectonic, geodynamic, mineralogical-geochemical, and biochemical aspects. Tikhookeanskaya geologiya, 2018, vol. 37, no. 2, pp. 3–16. (In Russ.). doi: 10.30911/0207-4028-2018-37-2-3-16. EDN: YWJJMW.
  18. Ukraintsev A.V., Plyusnin A.M. Application of solid-phase extraction method to analyse the composition of dissolved organic substances in carbonaceous mineral waters, in Baikal’skaya molodezhnaya nauchnaya konferentsiya po geologii i geofizike (Baikal Youth Scientific Conference on Geology and Geophysics). Ulan-Ude: GIN SB RAS, 2019. pp. 90–92. (In Russ.). EDN: UQYFKH.
  19. Shulga N.A., Peresypkin V.I. The genesis of hydrocarbons in hydrothermal deposits of the Lost City and Rainbow fields (Mid-Atlantic Ridge). Doklady Akademii nauk, 2012, vol. 445, no. 2, pp. 196–199. (In Russ.). EDN: OZLFGD.
  20. Andrade-Eiroa A., Canle M., Leroy-Cancellieri V., Cerda V. Solid phase extraction of organic compounds: a critical review. Part I. Trends in Analytical Chemistry, 2016, vol. 80. pp. 641. doi: 10.1016/j.trac.2015.08.015.
  21. Andrade-Eiroa A., Canle M., Leroy-Cancellieri V., Cerda V. Solid phase extraction of organic compounds: a critical review. Part II. Trends in Analytical Chemistry, 2016, vol. 80, pp. 655. doi: 10.1016/j.trac.2015.08.014. EDN: YMIBHS.
  22. Aubrey A., Cleaves H., Bada J. The role of submarine hydrothermal systems in the synthesis of amino acids. Origin of Life and Evolution of Biospheres, 2009, vol. 39, pp. 91–108. doi: 10.1007/s11084-008-9153-2. EDN: ZVBLBA.
  23. Badawy M.E.I., El‑Nouby M.A.M., Kimani P.K., Lim L.W., Rabea E.I. A review of the modern principles and applications of solid‑phase extraction techniques in chromatographic analysis. Analytical Sciences, 2022, vol. 38, pp. 1457–1487. doi: 10.1007/s44211-022-00190-8. EDN: SODPFO.
  24. Boschetti T., Etiope G., Toscani L. Abiotic methane in the hyperalkaline springs of Genova, Italy. Procedia Earth and Planetary Science, 2013, vol. 7, pp. 248–251. doi: 10.1016/j.proeps.2013.02.004.
  25. Fiebig J., Woodland A.B., Spangenberg J., Oschmann W. Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochimica et Cosmochimica Acta, 2007, vol. 71, pp. 3028–3039. doi: 10.1016/j.gca.2007.04.010. EDN: MJIIOX.
  26. Fu Q., Socki R.A., Niles P.B. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes. Geochimica et Cosmochimica Acta, 2015, vol. 154, pp. 1–17. doi: 10.1016/j.gca.2015.01.027. EDN: UPWCMD.
  27. Garcia-Sanchez B.E., Vara-Castro G.M., Kretzschmar Th., Sanchez-Avila J.I. Organic compounds in surface and groundwaters in the surrounding of a Mexican geothermal reservoir; case study Los Humeros, Puebla. Applied Geochemistry, 2022, vol. 147, 105442. doi: 10.1016/j.apgeochem.2022.105442. EDN: QNKFYM.
  28. Gonsior M., Hertkorn N., Hinman N., Dvorski S.E.-M., Harir M., Cooper W.J., Schmitt-Kopplin P. Yellowstone Hot Springs are Organic Chemodiversity Hot Spots. Scientific Reports, 2018, vol. 8, 14155. doi: 10.1038/s41598-018-32593-x.
  29. Gonzalez-Barreiro C., Cancho-Grande B., Araujo-NespereiraP., Cid-Fernandez J.A., Simal-Gandara J. Occurrence of soluble organic compounds in thermal watersby ion trap mass detection. Chemosphere, 2009, no. 75, pp. 34–47. doi: 10.1016/j.chemosphere.2008.11.067. EDN: MCRUXF.
  30. Konn C., Charlou J.L., Holm N.G., Mousis O. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology, 2015, vol. 15, no. 5, pp. 381–399. doi: 10.1089/ast.2014.1198. EDN: UPWCTL.
  31. Leins A., Bregnard D., Vieth‑Hillebrand A., Junier P., Regenspurg S. Dissolved organic compounds in geothermal fluids used for energy production: a review. Geothermal Energy, 2022, vol. 10, 9. doi: 10.1186/s40517-022-00220-8. EDN: UWEHOV.
  32. Nye J.J., Shock E.L., Hartnett H.E. A novel PARAFAC model for continental hot springs reveals unique dissolved organic carbon compositions. Organic Geochemistry, 2020, vol. 141, 103964. doi: 10.1016/j.orggeochem.2019.103964. EDN: XJEMHK.
  33. Ong C., Fowler A.P.G., Seyfried Jr. W.E., Sun T., Fu Q. Organic compounds in vent fluids from Yellowstone Lake, Wyoming. Organic Geochemistry, 2021, vol. 159, 104275. doi: 10.1016/j.orggeochem.2021.104275. EDN: TSKQFG.
  34. Sanchez-Avila J.I., García-Sanchez B.E., Vara-Castro G.M., Kretzschmar T. Distribution and origin of organic compounds in the condensates from a Mexican high-temperature geothermal field. Geothermics, 2021, vol. 89, 101980. doi: 10.1016/j.geothermics.2020.101980. EDN: XYKCCI.
  35. Soniassy R., Sandra P., Schlett C. Water analysis: Organic micropollutants. Germany: Hewlett-Packard Company, 1994. 278 p.
  36. Sunguti A.E., Kibet J.K., Kinyanjui T.K. A review of the status of organic pollutants in geothermal waters. Journal of Nature, Science & Technology, 2021, vol. 4, pp. 19–28. doi: 10.36937/janset.2021.004.005. EDN: ILGYKV.
  37. Szabo I., Varga C. Finding possible pharmacological effects of identified organic compounds in medicinal waters (BTEX and phenolic compounds). International Journal of Biometeorology, 2019, vol. 64, pp. 989–995. doi: 10.1007/s00484-019-01808-9. EDN: ARHVCB.
  38. Ukraintsev A.V., Plyusnin A.M., Chernyavskii M.K. Ferruginous mineral waters of Western Transbaikalia: formation of gas, trace elements, and dissolved organic matter composition. Geochemistry International, 2024, vol. 62, no. 6. pp. 659–673. doi: 10.1134/S0016702924700307. EDN: SSFMJM.
  39. Umoh U.U., Li L., He J., Chen L., Dong L., Jia G., Lahajnar N., Massoth G., Schwarz-Schampera U. Unusual aliphatic hydrocarbon profiles at hydrothermal vent fields of the Central and Southeast Indian Ridges and Mid-Indian Basin. Deep-Sea Research Part II, 2021, vol. 194, 104996. doi: 10.1016/j.dsr2.2021.104996. EDN: YEATWD.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Poturai V.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».