The role of HIF-1a in the development of an imbalance of carnitine metabolism in severe COVID-19 pneumonia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. Severe forms of COVID-19 pneumonia are associated with hypoxia, which increases inflammation and hemostasis disorders. HIF-1a plays a central role in the response to hypoxic conditions, which reprograms metabolism by inhibiting the tricarboxylic acid cycle and stimulating lactate production, leading to the accumulation of acetyl-CoA and activation of CRAT. Paradoxically, HIF-1a suppresses CPT1A, disrupting the β-oxidation of fatty acids. Dysregulation of carnitine-dependent fatty acid transport in COVID-19 has not been sufficiently studied. We suggest that HIF-1a-mediated suppression of CPT1A and the release of CRAT from damaged cells cause carnitine imbalance.

Aim of the study comprehensive analysis of the carnitine profile and CRAT level in severe COVID-19 pneumonia.

Material and Methods. The retrospective study included 30 people: 22 patients with COVID-19 pneumonia and 8 healthy volunteers. Patients with COVID-19 were divided according to the severity of the disease (moderate – 8, severe – 7, extremely severe – 7). The concentrations of total, free, and acylcarnitines in blood plasma were determined (calculated) by the L. Wan and R.W. Hubbard method on an enzyme immunoassay analyzer (410 nm). The levels of HIF-1a and CRAT in blood plasma were determined using competitive enzyme immunoassay.

Results. In patients with COVID-19 pneumonia, there was a significant increase in free carnitine (p=0.029) and a decrease in total carnitine (p=0.043) and acylcarnitines (p=0.016), as well as an increase in CRAT (p=0.028) compared with the group of healthy volunteers. In the extremely severe course of COVID-19 pneumonia, the CRAT level is elevated. The level of CRAT in blood plasma positively correlated with the severity of the condition (r=0.533, p<0.05) and the duration of ICU stay (r=0.588, p<0.01), and negatively with SPO₂ (r=-0.498, p<0.05), ROX index (r=-0.6, p<0.01) and the concentration of HIF-1a (r=-0.651, p<0.05). Free carnitine inversely (r=-0.487, p<0.05), and acylcarnitines directly (r=0.501, p<0.05) correlated with the duration of hospitalization. Total carnitine was inversely dependent on the ROX index (r=-0.588, p<0.01).

Conclusions. Carnitine imbalance was detected in patients with COVID-19 pneumonia, probably due to HIF-1a-induced beta-oxidation disorder. The level of CRAT in blood plasma is potentially a predictive marker of the severity of metabolic stress and hypoxia. Correlations of the carnitine profile with the duration of hospitalization and ROX emphasize the clinical significance of these indicators and require further study.

About the authors

S. N. Raitsev

Ryazan State Medical University

Author for correspondence.
Email: raitsevsergei@yandex.ru
ORCID iD: 0000-0002-6892-1768
SPIN-code: 3922-6472

Post-graduate Student, Department of Biological Chemistry

Russian Federation, 9 Vysokovoltnaya str., Ryazan, 390026

V. I. Zvyagina

Ryazan State Medical University

Email: raitsevsergei@yandex.ru
ORCID iD: 0000-0003-2800-5789
SPIN-code: 7553-8641

Dr.Sc. (Med.), Associate Professor, Department of Biological Chemistry

Russian Federation, 9 Vysokovoltnaya str., Ryazan, 390026

Y. A. Marsyanova

Ryazan State Medical University

Email: raitsevsergei@yandex.ru
ORCID iD: 0000-0003-4948-4504
SPIN-code: 4075-3169

Assistant, Department of Biological Chemistry

Russian Federation, 9 Vysokovoltnaya str., Ryazan, 390026

References

  1. Kalinin R.E., Suchkov I.A., Raitsev S.N. et al. Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in Pathogenesis of Novel Coronavirus Disease 2019. I. P. Pavlov Russian Medical Biological Herald. 2024; 32(1): 133–144. (In Russ.). doi: 10.17816/PAVLOVJ165536.
  2. Lyubavin A.V., Kotlyarov S.N. Peculiarities of the Course of Acute Coronary Syndrome in Patients with New Coronavirus Infection. Science of the young (Eruditio Juvenium). 2022; 10(1): 101–112. (In Russ.). doi: 10.23888/HMJ2022101101-112.
  3. Somers V.K., Kara T., Xie J. Progressive Hypoxia: A Pivotal Pathophysiologic Mechanism of COVID-19 Pneumonia. Mayo Clin Proc. 2020; 95(11): 2339–2342. doi: 10.1016/j.mayocp.2020.09.015.
  4. Semenza G.L. HIF-1 and mechanisms of hypoxia sensing. CurrOpin Cell Biol. 2001; 13(2): 167–171. doi: 10.1016/s0955-0674(00)00194-0.
  5. Semenza G.L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. The Journal of clinical investigation. 2013; 123(9): 3664–3671. doi: 10.1172/JCI67230.
  6. Kim J.W., Tchernyshyov I., Semenza G.L. et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006; 3(3): 177–185. doi: 10.1016/j.cmet.2006.02.002.
  7. Iyer N.V., Kotch L.E., Agani F. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998; 12(2): 149–162. doi: 10.1101/gad.12.2.149.
  8. Volpicella M., Sgobba M.N., Laera L. et al. Carnitine O-Acetyltransferase as a Central Player in Lipid and Branched-Chain Amino Acid Metabolism, Epigenetics, Cell Plasticity, and Organelle Function. Biomolecules. 2025; 15(2): 216. doi: 10.3390/biom15020216.
  9. Wang J., Xiang H., Lu Y. et al. The role and therapeutic implication of CPTs in fatty acid oxidation and cancers progression. Am J Cancer Res. 2021; 11(6): 2477–2494.
  10. Ma X., Zhang B., Yin X. et al. CPT1A/HIF-1α positive feedback loop induced fatty acid oxidation metabolic pathway contributes to the L-ascorbic acid-driven angiogenesis in breast cancer. Breast Cancer Res. 2025; 27(1): 74. doi: 10.1186/s13058-025-02039-0.
  11. Luo M., Li T., Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl). 2023; 101(5): 487–500. doi: 10.1007/s00109-023-02308-5.
  12. Vremenny`e metodicheskie rekomendacii: Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19), versiya 10 ot 08.02.2021 (In Russ.). From: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/662/original/Временные_МР_COVID-19_%28v.10%29.PDF.
  13. Charlson M., Wells M.T., Ullman R. et al. The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs. PLoS One. 2014; 9(12): e112479. doi: 10.1371/journal.pone.0112479.
  14. Roca O., Caralt B., Messika J. et al. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. American journal of respiratory and critical care medicine. 2019; 199(11): 1368–1376. doi: 10.1164/rccm.201803-0589OC.
  15. Wan L., Hubbard R.W. Determination of free and total carnitine with a random-access chemistry analyzer. Clin Chem. 1998; 44(4): 810–816.
  16. Raitsev S.N., Zvyagina V.I., Belskikh E.S. et al. Study of HIF-1αsignaling pathway components in plasma of patients with COVID-19 infection of different degrees of severity. Problems of biological, medical and pharmaceutical chemistry. 2024; 27(4): 57−62. (In Russ.). doi: 10.29296/25877313-2024-04-08.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).