Trace element status of the patients with alopecia areata


Cite item

Full Text

Abstract

The issue of trace elements participation in the pathogenesis of alopecia areata and the mechanisms of change in bio-concentrated trace remains unresolved and requires further consideration. Goal. To rate trace element balance in patients with alopecia areata. Material and methods. The study group consisted of patients with focal forms of alopecia areata (n = 100), the comparison group - healthy individuals (n = 100). The estimate of trace element status was performed by comparative analysis of the contents 11 trace elements (zinc, iron, copper, cobalt, chromium, manganese, nickel, strontium, bismuth, cadmium, lead) in whole blood and hair in the study group. Results. The study reported a significant decrease in the level of zinc and iron in a patient’s blood and an increase in bio-concentrate iron, copper, chromium and nickel in hair ofpatients compared with healthy participants. Trace element analysis of whole blood and hair allowed to suggeste that a cause of an arising microelement imbalance is probably an autoimmune inflammation in the skin ofpatients suffering from alopecia areata. Confirmation of this hypothesis requires further comprehensive studies.

About the authors

Tatiyana V. Nikolaeva

Orenburg State Medical University

Email: orenderma@yandex.ru
Cand. Med. Sci., associate Professor at the Department of dermatology of Orenburg State Medical University Orenburg, 460000, Russian Federation

References

  1. Юлдашев В.Л., Гафаров М.М., Галимов Р.К. Психологические особенности больных детей и подростков, страдающих гнездной алопецией. Российский журнал кожных и венерических болезней. 2009; 12(1): 54-7.
  2. Верхогляд И.В. Лечение гнездной алопеции с использованием эксимерного лазера. Российский журнал кожных и венерических болезней. 2009; 12(3): 69-70.
  3. Naginiene R., Kregzdyte R., Abdrakhmanovas A., Ryselis S. Assay of trace elements, thyroid gland and blood indices in children with alopecia. Trace Elements and Electrolytes. 2004; 21(10): 207-10. http://www.dustri.com/article_response_page.html?artId=2129&doi=10.5414/TEP21207&L=0
  4. El-Ashmawy A.A., Khedr A.M. Some trace elements level in alopecia areata. Egypt. Dermatol. Online J. 2013; 9(1): 6. http://www.edoj.org.eg/vol009/0901/006/01.htm
  5. Bhat Y.J., Manzoor S., Khan A.R., Qayoom S. Trace element levels in alopecia areata. Indian J. Dermatol. Venereol. Leprol. 2009; 75(1): 29-31.
  6. Alexis A.F., Dudda-Subramanya R., Sinha A.A. Alopecia areata: autoimmune basis of hair loss. Eur. J. Dermatol. 2004; 14(6): 364-70.
  7. Kil M.S., Kim C.W., Kim S.S. Analysis of serum zinc and copper concentrations in hair loss. Ann. Dermatol. 2013; 25(4): 405-9. doi: 10.5021/ad.2013.25.4.405.
  8. Гржибовский А.М. Типы данных, проверка распределения и описательная статистика. Экология человека. 2008; 1: 52-8.
  9. Бурцева Т.И., Рудаков И.А. Зависимость элементного состава волос от содержания биоэлементов в рационе питания. Микроэлементы в медицине. 2007; 8(1): 57-60.
  10. Amirnia M., Sinafar S., Sinafar H., Nuri M., Taban Sadeghi A. Assessment of zinc and copper contents in the hair and serum and also superoxide dismutase, glutathion peroxidase and malondi aldehyde in serum in androgenetic alopecia and alopecia areata. Life Sci. J. 2013; 10(1): 204-9. http://www.lifesciencesite.com/lsj/life1001/030_11559life1001_204_209.pdf
  11. Gregoriou S., Papafragkaki D., Kontochristopoulos G., Rallis E., Kalogeromitros D., Rigopoulos D. Cytokines and other mediators in alopecia areata. Mediators Inflamm. 2010; 2010: 928030. doi: 10.1155/2010/928030.
  12. Кадагидзе З.Г. Цитокины. Практическая онкология. 2003; 4(3): 131-9.
  13. Черешнев В.А., Гусев В.Ю. Иммунология воспаления: роль цитокинов. Медицинская иммунология. 2001; 3(3): 361-368.
  14. Davis S.R., Cousins R.J. Metallothionein expression in animals: a physiological perspective on function. J. Nutr. 2000; 130 (5):1085-8.
  15. Торшин И.Ю., Громова О.А., Гришина Т.Р., Рудаков К.В. Иерархия взаимодействий цинка и железа: физиологические, молекулярные и клинические аспекты. Трудный пациент. 2010; 3: 100-1.
  16. Beker Aydemir T., Chang S.M., Guthrie G.J., Maki A.B., Ryu M.S., Karabiyik A., Cousins R.J. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One. 2012; 7(10): e48679. doi: 10.1371/journal.pone.0048679.
  17. Часовских Н.Ю., Рязанцева Н.В., Кайгородова Е.В., Чечина О.Е., Соколович Е.Г., Новицкий В.В. Состояние системы МАР-киназ JNK и р38 в мононуклеарных лейкоцитах крови при воспалении. Медицинская Иммунология. 2009; 11(6): 515-22.
  18. Kelly E., Mathew J., Kohler J.E., Blass A.L., Soybel D.I. Redistribution of labile plasma zinc during mild surgical stress in the rat. Transl. Res. 2011; 157(3):139-49.
  19. Swindell W.R. Metallothionein and the biology of aging. Ageing Res. Rev. 2011;10(1):132-45.
  20. He Y., Chen S., Liu Y., Liang Y., Xiang J., Wu D., Zhou F. Coordination of Bi3+ to metal-free metallothionein: spectroscopy and density functional calculation of structure, coordination, and electronic excitations. J. Inorg. Biochem. 2012; 113: 9-14. doi: 10.1016/j.jinorgbio.2012.02.035.
  21. Kemna E., Pickkers P., Nemeth E., van der Hoeven H., Swinkels D. Timecourse analisis of hepcidin, serum iron and plasma cytokine levels in humans injected with LPS. Blood. 2005; 106(5): 1864-6.
  22. Nguyen N.B., Callaghan K.D., Ghio A.J., Haile D.J., Yang F. Hepcidin expression and iron transport in alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 2006; 291(3): L417-25.
  23. Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B.K., Ganz T. IL6 mediates hypoferremia inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Inv. 2004; 113(9): 1271-6.
  24. Jung Y.S. Metabolism of sulfur-containing amino acids in the liver: a link between hepatic injury and recovery. Biol. Pharm. Bull. 2015; 38(7): 971-4. doi: 10.1248/bpb.b15-00244.
  25. Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011; 15(7): 1957-97. doi: 10.1089/ars.2010.3586.
  26. Meltzer H.M., Brantsaeter A.L., Borch-Iohnsen B., Ellingsen D.G., Alexander J., Thomassen Y., et al. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study. Environ. Res. 2010; 110(5): 497-504. doi: 10.1016/j.envres.2010.03.006.
  27. Min K.S., Ueda H., Kihara T., Tanaka K. Increased hepatic accumulation of ingested Cd is associated with upregulation of several intestinal transporters in mice fed diets deficient in essential metals. Toxicol. Sci. 2008; 106(1): 284-9. doi: 10.1093/toxsci/kfn146.
  28. Скальный А.В., Рудаков И.А. Биоэлементы в медицине. М.: ОНИКС 21 век; Мир; 2004.
  29. Quarles C.D.Jr., Marcus R.K., Brumaghim J.L. Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. J. Biol. Inorg. Chem. 2011; 16(6): 913-21. doi: 10.1007/s00775-011-0792-9.
  30. Gaetke L.M., Chow-Johnson H.S., Chow C.K. Copper: toxicological relevance and mechanisms. Arch. Toxicol. 2014; 88(11): 1929-38. doi: 10.1007/s00204-014-1355-y.

Copyright (c) 2016 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies