Immune-related dermatological adverse events of antitumor immunotherapy with PD-1, PD-L1, CTLA-4 inhibitors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The discovery of a new group of modern anticancer drugs was a breakthrough in the treatment of cancer. Immune checkpoint inhibitors that block cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death receptor ligand (PD-L1) may improve prognosis for patients with malignant neoplasms with a high level of microsatellite instability. Despite the high effectiveness of these drugs, immune checkpoint inhibitors can lead to dysregulation of immune responses and the occurrence of adverse reactions associated with an increase in the activity of immunocompetent cells in the body.

The aim of this review is to analyze the available data on the immune-related dermatological adverse events during treatment with immune checkpoint inhibitors.

About the authors

Anastasiya Yu. Syryseva

Lomonosov Moscow State University; Municipal Clinical Oncological Hospital No. 1

Author for correspondence.
Email: syryseva.a@yandex.ru
ORCID iD: 0000-0001-9585-8373
SPIN-code: 9508-5690
Russian Federation, Moscow; Moscow

Evgeniya A. Shatokhina

Central State Medical Academy of Department of Presidential Affairs; Medical Research and Education Centre of Lomonosov Moscow State University

Email: e.a.shatokhina@gmail.com
ORCID iD: 0000-0002-0238-6563
SPIN-code: 3827-0100

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow; Moscow

Aleksandra S. Polonskaia

Central State Medical Academy of Department of Presidential Affairs

Email: dr.polonskaia@gmail.com
ORCID iD: 0000-0001-6888-4760
SPIN-code: 8039-4105

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Moscow

Larisa S. Kruglova

Central State Medical Academy of Department of Presidential Affairs

Email: kruglovals@mail.ru
ORCID iD: 0000-0002-5044-5265
SPIN-code: 1107-4372

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Ilya A. Pokataev

Municipal Clinical Oncological Hospital No. 1

Email: pokia@mail.ru
ORCID iD: 0000-0001-9864-3837
SPIN-code: 7338-9428

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Vsevolod N. Galkin

Municipal Clinical Oncological Hospital No. 1

Email: vsgalkin@gmail.com
ORCID iD: 0000-0002-6619-6179
SPIN-code: 3148-4843

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  2. Shah NJ, Lacouture ME. Dermatologic immune-related adverse events to checkpoint inhibitors in cancer. J Allergy Clin Immunol. 2023;151(2):407–409. doi: 10.1016/j.jaci.2022.11.015
  3. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukocyte Biology. 2013;94(1):41–53. doi: 10.1189/jlb.1212631
  4. Poprach A, Lakomý R, Büchler T. [Immunotherapy of renal cell carcinoma. (In Czech).]. Klin Onkol. 2017;30(Suppl 3):55–61. doi: 10.14735/amko20173S55
  5. Sakamuri D, Glitza IC, Cuellar SL, et al. Phase I dose-escalation study of anti-CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers. Mol Cancer Therapeutics. 2018;17(3):671–676. doi: 10.1158/1535-7163.MCT-17-0673
  6. Simmons D, Lang E. The most recent oncologic emergency: What emergency physicians need to know about the potential complications of immune checkpoint inhibitors. Cureus. 2017;9(10):e1774. doi: 10.7759/cureus.1774
  7. Calvo CR, Amsen D, Kruisbeek AM. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med. 1997;186(10):1645–1653. doi: 10.1084/jem.186.10.1645
  8. Cao T, Zhou X, Wu X, Zou Y. Cutaneous immune-related adverse events to immune checkpoint inhibitors: from underlying immunological mechanisms to multi-omics prediction. Front Immunol. 2023;(14):1207544. doi: 10.3389/fimmu.2023.1207544
  9. Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol. 2019;54(2):407–419. doi: 10.3892/ijo.2018.4661
  10. Kirkwood JM, Butterfield LH, Tarhini AA, et al. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62(5):309–335. doi: 10.3322/caac.20132
  11. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;(29):235–271. doi: 10.1146/annurev-immunol-031210-101324
  12. Collins LK, Chapman MS, Carter JB, Samie FH. Cutaneous adverse effects of the immune checkpoint inhibitors. Curr Probl Cancer. 2017;41(2):125–128. doi: 10.1016/j.currproblcancer.2016.12.001
  13. Inno A, Metro G, Bironzo P, et al. Pathogenesis, clinical manifestations and management of immune checkpoint inhibitors toxicity. Tumori. 2017;103(5):405–421. doi: 10.5301/tj.5000625
  14. Boutros C, Tarhini A, Routier E, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nature Rev Clin Oncol. 2016;13(8):473–486. doi: 10.1038/nrclinonc.2016.58
  15. Shubnikova EV, Bukatina TM, Velts NY, et al. Immune response checkpoint inhibitors: New risks of a new class of antitumor agents. Safety Risk Pharmacotherapy. 2020;8(1):9–22. EDN: EEVXRX doi: 10.30895/2312-7821-2020-8-1-9-22
  16. Ma B, Anandasabapathy N. Immune checkpoint blockade and skin toxicity pathogenesis. J Invest Dermatol. 2022;142(3, Pt B):951–959. doi: 10.1016/j.jid.2021.06.040
  17. Apalla Z, Rapoport B, Sibaud V. Dermatologic immune-related adverse events: The toxicity spectrum and recommendations for management. Int J Womens Dermatol. 2021;7(5, Pt A):625–635. doi: 10.1016/j.ijwd.2021.10.005
  18. Lyadova MA, Lyadov VK. Immune-mediated adverse events in immune checkpoint inhibitors therapy: literature review. J Modern Oncol. 2021;23(2):319–326. EDN: BKMZKU doi: 10.26442/18151434.2021.2.200502
  19. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: A review. JAMA Oncol. 2016;2(10):1346–1353. doi: 10.1001/jamaoncol.2016.1051
  20. Protsenko SA, Antimonik NY, Balluzek MF, et al. Practical recommendations for the management of immune-mediated adverse events: RUSSCO Practice Guidelines. Malignant Tumours. 2021;11(#3s2):187–223. (In Russ). doi: 10.18027/2224-5057-2021-11-3s2-50
  21. Kaunitz GJ, Loss M, Rizvi H, et al. Cutaneous eruptions in patients receiving immune checkpoint blockade: Clinicopathologic analysis of the nonlichenoid histologic pattern. Am J Surg Pathol. 2017;41(10):1381–1389. doi: 10.1097/PAS.0000000000000900
  22. Phillips GS, Freites-Martinez A, Wu J, et al. Clinical characterization of immunotherapy-related pruritus among patients seen in 2 oncodermatology clinics. JAMA Dermatol. 2019;155(2):249–251. doi: 10.1001/jamadermatol.2018.4560
  23. Belum VR, Benhuri B, Postow MA, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer. 2016;(60):12–25. doi: 10.1016/j.ejca.2016.02.010
  24. Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5(1):95. doi: 10.1186/s40425-017-0300-z
  25. Minkis K, Garden BC, Wu S, et al. The risk of rash associated with ipilimumab in patients with cancer: A systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2013;69(3):e121–e128. doi: 10.1016/j.jaad.2012.12.963
  26. Tattersall IW, Leventhal JS. Cutaneous toxicities of immune checkpoint inhibitors: The role of the dermatologist. Yale J Biol Med. 2020;93(1):123–132.
  27. Chou S, Hwang SJ, Carlos G, et al. Histologic assessment of lichenoid dermatitis observed in patients with advanced malignancies on antiprogramed cell death-1 (anti-PD-1) therapy with or without ipilimumab. Am J Dermatopathol. 2017;39(1):23–27. doi: 10.1097/DAD.0000000000000587
  28. Si X, He C, Zhang L, et al. Management of immune checkpoint inhibitor-related dermatologic adverse events. Thorac Cancer. 2020;11(2):488–492. doi: 10.1111/1759-7714.13275
  29. Lee CK, Li S, Tran DC, et al. Characterization of dermatitis after PD-1/PD-L1 inhibitor therapy and association with multiple oncologic outcomes: A retrospective case-control study. J Am Acad Dermatol. 2018;79(6):1047–1052. doi: 10.1016/j.jaad.2018.05.035
  30. Hofmann L, Forschner A, Loquai C, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;(60):190–209. doi: 10.1016/j.ejca.2016.02.025
  31. Schaberg KB, Novoa RA, Wakelee HA, et al. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J Cutan Pathol. 2016;43(4):339–346. doi: 10.1111/cup.12666
  32. Lacouture ME, Wolchok JD, Yosipovitch G, et al. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Dermatol. 2014;71(1):161–169. doi: 10.1016/j.jaad.2014.02.035
  33. Joseph RW, Cappel M, Goedjen B, et al. Lichenoid dermatitis in three patients with metastatic melanoma treated with anti-PD-1 therapy. Cancer Immunol Res. 2015;3(1):18–22. doi: 10.1158/2326-6066.CIR-14-0134
  34. Shi VJ, Rodic N, Gettinger S, et al. Clinical and histologic features of lichenoid mucocutaneous eruptions due to anti-programmed cell death 1 and anti-programmed cell death ligand 1 immunotherapy. JAMA Dermatol. 2016;152(10):1128–1136. doi: 10.1001/jamadermatol.2016.2226
  35. Nikolaou V, Sibaud V, Fattore D, et al. Immune checkpoint-mediated psoriasis: A multicenter European study of 115 patients from the European Network for Cutaneous Adverse Event to Oncologic Drugs (ENCADO) group. J Am Acad Dermatol. 2021;84(5):1310–1320. doi: 10.1016/j.jaad.2020.08.137
  36. Bonigen J, Raynaud-Donzel C, Hureaux J, et al. Anti-PD1-induced psoriasis: A study of 21 patients. J Eur Acad Dermatol Venereol. 2017;31(5):e254–e257. doi: 10.1111/jdv.14011
  37. Shatokhina EA, Polonskaia AS, Kruglova LS, Shatokhin MN. Dermatologic adverse events of cancer immunotherapy with anti-PD-1 and anti-PD-L1 monoclonal antibodies. Immunologiya. 2021;42(6):641–654. EDN: UAFIWM doi: 10.33029/0206-4952-2021-42-6-641-654
  38. Ellis SR, Vierra AT, Millsop JW, et al. Dermatologic toxicities to immune checkpoint inhibitor therapy: A review of histopathologic features. J Am Acad Dermatol. 2020;83(4):1130–1143. doi: 10.1016/j.jaad.2020.04.105
  39. Dulos J, Carven GJ, van Boxtel SJ, et al. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J Immunotherapy. 2012;35(2):169–178. doi: 10.1097/CJI.0b013e318247a4e7
  40. Geisler AN, Phillips GS, Barrios DM, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol. 2020;83(5):1255–1268. doi: 10.1016/j.jaad.2020.03.132
  41. Siegel J, Totonchy M, Damsky W, et al. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: A retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J Am Acad Dermatol. 2018;79(6):1081–1088. doi: 10.1016/j.jaad.2018.07.008
  42. Aggarwal P. Disproportionality analysis of bullous pemphigoid adverse events with PD-1 inhibitors in the FDA adverse event reporting system. Expert Opin Drug Saf. 2019;18(7):623–633. doi: 10.1080/14740338.2019.1619693
  43. Curry JL, Tetzlaff MT, Nagarajan P, et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol. 2017;44(2):158–176. doi: 10.1111/cup.12858
  44. Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: Skin toxicities and immunotherapy. Am J Clin Dermatol. 2018;19(3):345–361. doi: 10.1007/s40257-017-0336-3
  45. Larsabal M, Marti A, Jacquemin C, et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J Am Acad Dermatol. 2017;76(5):863–870. doi: 10.1016/j.jaad.2016.10.044
  46. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–1982. doi: 10.1200/JCO.2014.59.4358

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mechanism of action of immune checkpoint inhibitors (adapted from [16]).

Download (430KB)
3. Fig. 2. Multiple excoriations with haemorrhagic crusts on the skin of the forearm (a) and back (b) due to severe pruritus on the background of nivolumab treatment.

Download (320KB)
4. Fig. 3. Symptom of “polished nails” in severe pruritus occurring on the background of prolgolimumab treatment.

Download (367KB)
5. Fig. 4. Maculopapular rashes produced by treatment with nivolumab.

Download (524KB)
6. Fig. 5. Lichenoid rashes produced by treatment with pembrolizumab.

Download (502KB)
7. Fig. 6. Psoriasiform rashes produced by treatment with pembrolizumab.

Download (465KB)
8. Fig. 7. Bullous pemphigoid resulting from treatment with nivolumab.

Download (377KB)
9. Fig. 8. Vitiligo-like reaction produced by treatment with prolgolimumab: а ― vitiligo-like depigmentation of the skin; b ― hair pigment loss.

Download (856KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies