Pemphigus: New approaches to diagnosis and disease severity assessment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pemphigus represents a group of severe and potentially fatal autoimmune bullous diseases. Pemphigus clinical findings represents skin and/or mucous membranes keratinocytes acantholysis with intraepithelial blisters and erosions formation which is life-threatening and, if relapsed, significantly reduce the patients’ quality of life. The on-time disease diagnosis is a key to successful pemphigus management and timely treatment onset allowing intensive disease progression avoidance.

The article reviews up-to-date diagnosing methods and assessment measure for monitoring pemphigus severity. In addition to standard diagnosis methods, such as clinical findings, histological examination, direct and indirect immunofluorescence, and enzyme immunoassay (ELISA), the article focuses on revieing new diagnostic and disease severity prediction approaches, such as microRNAs expression and skin and mucous membranes microbiome analysis since false positive and false negative results in histological and immunohistochemical analysis as well as the laboratories insufficient equipment makes finding pemphigus new diagnostic and prognostic methods a relevant challenge.

About the authors

Natalia P. Teplyuk

The First Sechenov Moscow State Medical University (Sechenov University)

Email: teplyukn@gmail.com
ORCID iD: 0000-0002-5800-4800
SPIN-code: 8013-3256

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Yulia V. Kolesova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: jusamilutin@rambler.ru
ORCID iD: 0000-0002-3617-2555
SPIN-code: 1441-8730

Graduate Student, Assistant Lecturer

Russian Federation, Moscow

Daria V. Mak

The First Sechenov Moscow State Medical University (Sechenov University)

Email: bedariaaa@gmail.com
ORCID iD: 0000-0002-7020-0572
SPIN-code: 8204-4555

Graduate Student

Russian Federation, Moscow

Anfisa A. Lepekhova

The First Sechenov Moscow State Medical University (Sechenov University)

Email: anfisa.lepehova@yandex.ru
ORCID iD: 0000-0002-4365-3090
SPIN-code: 3261-3520

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Moscow

Stepan V. Toshchakov

National Research Centre "Kurchatov Institute"

Author for correspondence.
Email: stepan.toshchakov@gmail.com
ORCID iD: 0000-0001-7549-3450
SPIN-code: 8994-5224

National Research Centre "Kurchatov Institute"

Russian Federation

Tatiana A. Fedotcheva

The Russian National Research Medical University named after N.I. Pirogov

Email: tfedotcheva@mail.ru
ORCID iD: 0000-0003-4998-9991
SPIN-code: 1261-5650

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Egu DT, Schmitt T, Waschke J. Mechanisms causing acantholysis in pemphigus-lessons from human skin. Front Immunol. 2022;(13):884067. doi: 10.3389/fimmu.2022.884067
  2. Schmitt T, Pircher J, Steinert L, et al. Dsg1 and Dsg3 composition of desmosomes across human epidermis and alterations in pemphigus vulgaris patient skin. Front Immunol. 2022;(13):884241. doi: 10.3389/fimmu.2022.884241
  3. Tkachenko SB, Teplyuk NP, Allenova AS, Lepekhova AA. On the classification of bullous dermatoses. Russ J Skin Venereal Dis. 2015;18(2):11–14. (In Russ).
  4. Satyam A, Khandpur S, Sharma VK, Sharma A. Involvement of T(H)1/T(H)2 cytokines in the pathogenesis of autoimmune skin disease-Pemphigus vulgaris. Immunol Invest. 2009;38(6):498–509. doi: 10.1080/08820130902943097
  5. Lee SH, Hong WJ, Kim SC. Analysis of serum cytokine profile in pemphigus. Ann Dermatol. 2017;29(4):438–445. doi: 10.5021/ad.2017.29.4.438
  6. Rizzo C, Fotino M, Zhang Y, et al. Direct characterization of human T cells in pemphigus vulgaris reveals elevated autoantigen-specific Th2 activity in association with active disease. Clin Exp Dermatol. 2005;30(5):535–540. doi: 10.1111/j.1365-2230.2005.01836.x
  7. Grando SA. Pemphigus autoimmunity: hypotheses and realities. Autoimmunity. 2012;45(1):7–35. doi: 10.3109/08916934.2011.606444
  8. Didona D, Maglie R, Eming R, Hertl M. Pemphigus: Current and future therapeutic strategies. Front Immunol. 2019;(10):1418. doi: 10.3389/fimmu.2019.01418
  9. Leshem YA, Gdalevich M, Ziv M, et al. Opportunistic infections in patients with pemphigus. J Am Academy Dermatol. 2014;71(2):284–292. doi: 10.1016/j.jaad.2014.03.020
  10. Teplyuk NP, Lepekhova AA. Clinical aspects of steroid resistance in autoimmune pemphigus. Russ J Skin Venereal Dis. 2014;17(2):13–16. (In Russ).
  11. Xuan RR, Yang A, Murrell DF. New biochip immunofluorescence test for the serological diagnosis of pemphigus vulgaris and foliaceus: A review of the literature. Int J Women’s Dermatol. 2018;4(2):102–108. doi: 10.1016/j.ijwd.2017.10.001
  12. Joly P, Litrowski N. Pemphigus group (vulgaris, vegetans, foliaceus, herpetiformis, brasiliensis). Clin Dermatol. 2011;29(4):432–436. 10.1016/j.clindermatol.2011.01.013
  13. Lim YL, Bohelay G, Hanakawa S, et al. Autoimmune pemphigus: Latest advances and emerging therapies. Front Molecular Biosci. 2022;(8):808536. doi: 10.3389/fmolb.2021.808536
  14. Bystryn JC, Rudolph JL. Pemphigus. Lancet (London, England). 2005;366(9479):61–73. doi: 10.1016/S0140-6736(05)66829-8
  15. Kneisel A, Hertl M. Autoimmune bullous skin diseases. Part 1: Clinical manifestations. J Dtsch Dermatol Ges. 2011;9(10):844–857. doi: 10.1111/j.1610-0387.2011.07793.x
  16. Schmidt E, Goebeler M, Hertl M, et al. S2k guideline for the diagnosis of pemphigus vulgaris/foliaceus and bullous pemphigoid. J Dtsch Dermatol Ges. 2015;13(7):713–727. doi: 10.1111/ddg.12612
  17. Tan JC, Tat LT, Francis KB, et al. Prospective study of ocular manifestations of pemphigus and bullous pemphigoid identifies a high prevalence of dry eye syndrome. Cornea. 2015;34(4):443–448. doi: 10.1097/ICO.0000000000000335
  18. James KA, Culton DA, Diaz LA. Diagnosis and clinical features of pemphigus foliaceus. Dermatol Clin. 2011;29(3):405-viii. doi: 10.1016/j.det.2011.03.012
  19. Harel-Raviv M, Srolovitz H, Gornitsky M. Pemphigus vulgaris: The potential for error. A case report. Spec Care Dentist. 1995;15(2):61–64. doi: 10.1111/j.1754-4505.1995.tb00478.x
  20. Khamaganova IV, Malyarenko EN, Denisova EV, et al. Error in the diagnosis of vulgar pemphigus: A clinical case. Russ J Skin Venereal Dis. 2017;20(1):30–33. (In Russ). doi: 10.18821/1560-9588-2017-20-1-30-33
  21. Petrovа SY, Berzhets VM, Radiсova OV. Difficulties of differential diagnosis of blistering dermatoses. Pemphigus erythematosus is a case from clinical practice. Immunopathol Allergol Infectol. 2017;(4):31–36. (In Russ). doi: 10.14427/jipai.2017.4.31
  22. Daltaban Ö, Özçentik A, Karakaş A, et al. Clinical presentation and diagnostic delay in pemphigus vulgaris: A prospective study from Turkey. J Oral Pathol Med. 2020;49(7):681–686. doi: 10.1111/jop.13052
  23. Morishima-Koyano M, Nobeyama Y, Fukasawa-Momose M, et al. Case of pemphigus foliaceus misdiagnosed as a single condition of erythrodermic psoriasis and modified by brodalumab. J Dermatol. 2020;47(5):e201–e202. doi: 10.1111/1346-8138.15295
  24. Siadat AH, Moeine R, Iraji F, et al. Pemphigus vegetans misdiagnosed as condylomata acuminata: A case report. Clin Case Rep. 2022;10(10):e6393. doi: 10.1002/ccr3.6393
  25. Petruzzi M, Vella F, Squicciarini N, et al. Diagnostic delay in autoimmune oral diseases. Oral Dis. 2022. doi: 10.1111/odi.14480
  26. Murrell DF, Peña S, Joly P, et al. Diagnosis and management of pemphigus: Recommendations of an international panel of experts. J Am Academy Dermatol. 2020;82(3):575–585.e1. doi: 10.1016/j.jaad.2018.02.021
  27. Xuan RR, Yang A, Murrell DF. New biochip immunofluorescence test for the serological diagnosis of pemphigus vulgaris and foliaceus: A review of the literature. Int J Women’s Dermatol. 2018;4(2):102–108. doi: 10.1016/j.ijwd.2017.10.001
  28. Tkachenko SB, Teplyuk NP, Minnibayev MT, et al. Modern methods of differential diagnosis of true (autoimmune) pemphigus and bullous pemphigoid. Russ J Skin Venereal Dis. 2015;18(3):17–22. (In Russ).
  29. Buch AC, Kumar H, Panicker N, et al. A cross-sectional study of direct immunofluorescence in the diagnosis of immunobullous dermatoses. Indian J Dermatol. 2014;59(4):364–368. doi: 10.4103/0019-5154.135488
  30. Kridin K, Bergman R. The usefulness of indirect immunofluorescence in pemphigus and the natural history of patients with initial false-positive results: A retrospective cohort study. Front Med. 2018;(5):266. doi: 10.3389/fmed.2018.00266
  31. Makhneva NV, Davidenko EB, Beletskaya LV. Diagnosis and differential diagnosis of autoimmune pemphigus. Almanac Clin Med. 2014;(34):9–14. (In Russ). doi: 10.18786/2072-0505-2014-34-9-14
  32. Malik AM, Tupchong S, Huang S, et al. An updated review of pemphigus diseases. Medicina (Kaunas). 2021;57(10):1080. doi: 10.3390/medicina57101080
  33. Preclaro IA, Wu YH. Spongiotic pattern in pemphigus: A retrospective observational single-center study. Dermatopathol (Basel). 2022;9(2):172–182. doi: 10.3390/dermatopathology9020022
  34. Manocha A, Tirumalae R. Histopathology of pemphigus vulgaris revisited. Am J Dermatopathol. 2021;43(6):429–437. doi: 10.1097/DAD.0000000000001838
  35. Schmidt E, Kasperkiewicz M, Joly P. Pemphigus. Lancet. 2019;394(10201):882–894. doi: 10.1016/S0140-6736(19)31778-7
  36. Saschenbrecker S, Kar I, Komorowski L, et al. Serological diagnosis of autoimmune bullous skin diseases. Front Immunol. 2019;(10):1974. doi: 10.3389/fimmu.2019.01974
  37. Giurdanella F, Nijenhuis AM, Diercks GF, et al. Keratinocyte binding assay identifies anti-desmosomal pemphigus antibodies where other tests are negative. Front Immunol. 2018;(9):839. doi: 10.3389/fimmu.2018.00839
  38. Kurbanov AA, Abramova TV. The use of clinical and diagnostic indices in assessing the severity of pemphigus (comparative analysis). Bulletin Dermatol Venereol. 2016;92(3):36–45. (In Russ). doi: 10.25208/0042-4609-2016-92-3-36-45
  39. Sebaratnam D, Hanna AM, Chee SN, et al. Development of a quality-of-life instrument for autoimmune bullous disease: The autoimmune bullous disease quality of life questionnaire. JAMA Dermatol. 2013;149(10):1186–1191. doi: 10.1001/jamadermatol.2013.4972
  40. Chen G, Yang B, Zhang Z, et al. Chinese version of the treatment of autoimmune bullous disease quality of life questionnaire: Reliability and validity. Indian J Dermatol Venereol Leprol. 2018;84(4):431–436. doi: 10.4103/ijdvl.IJDVL_538_16
  41. Behkar A, Garmaroudi G, Nasimi M, et al. Assessing quality of life in patients with autoimmune bullous diseases using the Persian version of treatment of autoimmune bullous disease quality of life questionnaire finds similar effects in women as men. Int J Women’s Dermatol. 2022;8(1):e004. doi: 10.1097/JW9.0000000000000004
  42. Delavarian Z, Layegh P, Pakfetrat A, et al. Evaluation of desmoglein 1 and 3 autoantibodies in pemphigus vulgaris: Correlation with disease severity. J Clin Exp Dentistry. 2020;12(5):e440–e445. doi: 10.4317/jced.56289
  43. Russo I, De Siena FP, Saponeri A, Alaibac M. Evaluation of anti-desmoglein-1 and anti-desmoglein-3 autoantibody titers in pemphigus patients at the time of the initial diagnosis and after clinical remission. Medicine. 2017;96(46):e8801. doi: 10.1097/MD.0000000000008801
  44. Singhvi G, Manchanda P, Rapalli V, et al. MicroRNAs as biological regulators in skin disorders. Biomed Pharmacother. 2018;(108):996–1004. doi: 10.1016/j.biopha.2018.09.090
  45. Ruksha TG, Komina AV, Palkina NV. MicroRNA in skin diseases. Eur J Dermatol. 2017;27(4):343–352. doi: 10.1684/ejd.2017.3024
  46. Papara C, Zillikens D, Sadik CD, Baican A. MicroRNAs in pemphigus and pemphigoid diseases. Autoimmunity Rev. 2021;20(7):102852. doi: 10.1016/j.autrev.2021.102852
  47. Glavač D, Ravnik-Glavač M. Essential role of microRNA in skin physiology and disease. Adv Exp Med Biology. 2015;(888):307–330. doi: 10.1007/978-3-319-22671-2_16
  48. Baulina NM, Kulakova OG, Favorova OO. MicroRNA: A role in the development of autoimmune inflammation. Acta Naturae. 2016;8(1):23–36. (In Russ).
  49. Lin N, Liu Q, Wang M, et al. Usefulness of miRNA-338-3p in the diagnosis of pemphigus and its correlation with disease severity. Peer J. 2018;(6):e5388. doi: 10.7717/peerj.5388
  50. Xu M, Liu Q, Li S, et al. Increased expression of miR-338-3p impairs Treg-mediated immunosuppression in pemphigus vulgaris by targeting RUNX1. Exp Dermatol. 2020;29(7):623–629. doi: 10.1111/exd.14111
  51. He W, Xing Y, Li C, et al. Identification of six microRNAs as potential biomarkers for pemphigus vulgaris: From diagnosis to pathogenesis. Diagnostics (Basel, Switzerland). 2022;12(12):3058. doi: 10.3390/diagnostics12123058
  52. Gareev IF, Beylerli OA. Circulating microRNAs as biomarkers: What are perspectives? Preventive Med. 2018;21(6):142–150. (In Russ).
  53. Araviiskaia ER, Sokolovskiy EV. Microbiome: A new era in normal and pathological changes skin studies. Bulletin Dermatol Venereol. 2016;92(3):102–109. (In Russ). doi: 10.25208/0042-4609-2016-92-3-102-109
  54. Boxberger M, Cenizo V, Cassir N, La Scola B. Challenges in exploring and manipulating the human skin microbiome. Microbiome. 2021;9(1):125. doi: 10.1186/s40168-021-01062-5
  55. Kong HH, Andersson B, Clavel T, et al. Performing skin microbiome research: A method to the madness. J Invest Dermatol. 2017;137(3):561–568. doi: 10.1016/j.jid.2016.10.033
  56. Li BJ, He WX, Hua H, Pan W. Potential correlation of oral flora with pemphigus vulgaris: A case control study. J Dental Sci. 2023;18(4):1612-1620. doi: 10.1016/j.jds.2023.01.037
  57. Künstner A, Sommer N, Künzel S, et al. Skin microbiota as potential trigger factors for pemphigus vulgaris. Exp Derm. 2018;27(3):e95. doi: 10.1111/exd.13486
  58. Scaglione G, Fania L, De Paolis E, et al. Evaluation of cutaneous, oral and intestinal microbiota in patients affected by pemphigus and bullous pemphigoid: A pilot study. Exp Mol Pathol. 2020;(112):104331. doi: 10.1016/j.yexmp.2019.104331
  59. Olisova OY, Teplyuk NP. An illustrated guide to dermatology. For preparing practitioners for accreditation. Moscow: GEOTAR-Media; 2023. 376 р. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Modern methods of diagnosis of autoimmune pemphigus (a straight line is already used diagnostic methods, a dotted line is promising methods). АП ― autoimmune pemphigus; ВП ― vulgar pemphigus; ЛП ― leaf-shaped pemphigus; ИФА (ELISA) ― enzyme immunoassay; РИФ ― immunofluorescence reaction.

Download (832KB)
3. Fig. 2. Clinical picture of vulgar pemphigus on the skin: erosions with fragments of epidermis tires on the periphery are noted.

Download (652KB)
4. Fig. 3. Clinical picture of leaf-shaped pemphigus: erosions covered with thin, layered scales-crusts.

Download (614KB)
5. Fig. 4. Histological picture of vulgar pemphigus: acantholysis at the level of the spiny layer, which led to the formation of an intraepidermal bubble.

Download (695KB)
6. Fig. 5. Histological picture of leaf-shaped pemphigus (3 months from the onset of the disease): formation of intraepidermal microabsesses.

Download (712KB)
7. Fig. 6. Direct immunofluorescence reaction in a patient with vulgar pemphigus: fixation of IgG in the spiny layer of the epidermis.

Download (532KB)

Copyright (c) 2023 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies