New trends in the regenerative therapy of vitiligo. Literature review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Vitiligo is the most common acquired skin depigmentation disorder characterized by progressive loss of pigmentation caused by the destruction of functional melanocytes in the epidermis. The pathogenesis consists in the interaction of genetic components, metabolic factors associated with cellular oxidative stress, adhesion of melanocytes to the epithelium and autoimmunity, which culminate in aggression against melanocytes. To date, the treatment of vitiligo, according to Russian and European clinical guidelines, consists in the appointment of various drug and non-drug methods: the use of topical and systemic glucocorticosteroids, calcineurin inhibitors, azathioprine, phototherapy, both in the form of monotherapy and their combination.

In recent years, in connection with the development of cellular technologies, alternative methods of therapy based on the transplantation of autologous cultured and non-cultured melanocytes have become widespread in the treatment of vitiligo. The most promising options for vitiligo cell therapy are methods based not only on the transplantation of ready-made cellular structures, but also on the replacement of damaged cells with a transplant of pluropotent progenitor stem cells or their immature committed structures.

This article is of an overview nature. The aim of the review is to update information on promising new treatments for vitiligo. A literature review was conducted using the PubMed, Cochrane Library, CyberLeninka and Internet databases to study clinical and preclinical data on the possibility of using innovative methods of regenerative medicine in patients with vitiligo.

This review is addressed to medical researchers interested in the treatment of vitiligo.

About the authors

Olga Yu. Olisova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: olisovaolga@mail.ru
ORCID iD: 0000-0003-2482-1754
SPIN-code: 2500-7989

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Petr S. Timashev

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: timashev_p_s@staff.sechenov.ru
ORCID iD: 0000-0001-7773-2435

Dr. Sci. (Chem.), Professor

Russian Federation, Moscow

Elizaveta V. Pishulina

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: liza.pishulina.98@mail.ru
ORCID iD: 0000-0002-5346-463X
Russian Federation, Moscow

Juliya M. Semiklet

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: semiklet.jul@mail.ru
ORCID iD: 0000-0001-7615-3917
SPIN-code: 3245-4770
Russian Federation, Moscow

Elizaveta A. Berdnikova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: elizaveta.berdnikova@list.ru
ORCID iD: 0000-0002-1147-8144

Student

Russian Federation, Moscow

Polina I. Koteneva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: timashev_p_s@staff.sechenov.ru
ORCID iD: 0000-0001-9428-8487
SPIN-code: 3508-0271
Russian Federation, Moscow

Konstantin M. Lomonosov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: lamclinic@yandex.ru
ORCID iD: 0000-0002-4580-6193
SPIN-code: 4784-9730

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Gauthier Y, Andre CM, Taïeb A. A critical appraisal of vitiligo etiologic theories. Ismelanocyteloss a melanocytorrhagy? Pigment Cell Res. 2003;16(4):322–332. doi: 10.1034/j.1600-0749.2003.00070.x
  2. Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236(6):571–592. doi: 10.1159/000506103
  3. Castro CC, Miot HA. Prevalence of vitiligo in Brazil: A population survey. Pigment Cell Melanoma Res. 2018;31(3):448–450. doi: 10.1111/pcmr.12681
  4. Castro CC, Nascimento LL, Olandoski M, Mira MT. A pattern of association between clinical form of vitiligo and disease-related variables in a Brazilian population. J Dermatol Sci. 2012;65(1):63–67. doi: 10.1016/j.jdermsci.2011.09.011
  5. Krüger C, Schallreuter KU. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol. 2012;51(10):1206–1212. doi: 10.1111/j.1365-4632.2011.05377.x
  6. Ezzedine K, Lim HW, Suzuki T, et al.; Vitiligo Global Issue Consensus Conference Panelists. Revised classification/nomenclature of vitiligo and related issues: The Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012;25(3):E1–13. doi: 10.1111/j.1755-148X.2012.00997.x
  7. Boniface K, Seneschal J, Picardo M, Taïeb A. Vitiligo: Focus on clinical aspects, immunopathogenesis, and therapy. Clin Rev Allergy Immunol. 2018;54(1):52–67. doi: 10.1007/s12016-017-8622-7
  8. Speeckaert R, van Geel N. Vitiligo: An update on pathophysiology and treatment options. Am J Clin Dermatol. 2017;18(6):733–744. doi: 10.1007/s40257-017-0298-5
  9. Prignano F, d’Erme AM, Bonciolini V, Lotti T. Mucosal psoriasis: A new insight toward a systemic inflammatory disease. Int J Dermatol. 2011;50(12):1579–1581. doi: 10.1111/j.1365-4632.2010.04864.x
  10. Davletshina AY, Lomonosov KM. Dermatoscopic patterns of vitiligo. Russ J Skin Venereal Dis. 2020;23(6):381–387. (In Russ). doi: 10.17816/dv60488
  11. Ongenae K, van Geel N, De Schepper S, Naeyaert JM. Effect of vitiligo on self-reported health-related quality of life. Br J Dermatol. 2005;152(6):1165–1172. doi: 10.1111/j.1365-2133.2005.06456.x
  12. Daniel BS, Wittal R. Vitiligo treatment update. Australas J Dermatol. 2015;56(2):85–92. doi: 10.1111/ajd.12256
  13. Luger T, Paul C. Potential new indications of topical calcineurin inhibitors. Dermatology. 2007;215(Suppl 1):45–54. doi: 10.1159/000102119
  14. Kuga K, Nishifuji K, Iwasaki T. Cyclosporine A inhibits transcription of cytokine genes and decreases the frequencies of IL-2 producing cells in feline mononuclear cells. J Vet Med Sci. 2008;70(10):1011–1016. doi: 10.1292/jvms.70.1011
  15. Vovdenko KA, Khafizova AA, Lomonosov KM. Effectiveness of combination of UVB-311 nm and azathioprine in the treatment of non-segmental vitiligo. Russ J Skin Venereal Dis. 2022;25(4):269–278. (In Russ). doi: 10.17816/dv111578
  16. Krotkova EA. Treatment of vitiligo: A look into the future (literature review). Russ J Skin Venereal Dis. 2021;24(6):537–542. (In Russ). doi: 10.17816/dv101158
  17. Lomonosov KM, Gereikhanova LG. Algorithm of vitiligo treatment. Russ J Skin Venereal Dis. 2016;19(3):167–169. (In Russ). doi: 10.18821/1560-9588-2016-19-3-167-169
  18. Qi F, Liu F, Gao L. Janus kinase inhibitors in the treatment of vitiligo: A review. Front Immunol. 2021;(12):790125. doi: 10.3389/fimmu.2021.790125
  19. Ramos MG, Ramos DG, Ramos CG. Evaluation of treatment response to autologous transplantation of noncultured melanocyte/keratinocyte cell suspension in patients with stable vitiligo. An Bras Dermatol. 2017;92(3):312–318. doi: 10.1590/abd1806-4841.20175700
  20. Liebl H, Kloth LC. Skin cell proliferation stimulated by microneedles. J Am Coll Clin Wound Spec. 2012;4(1):2–6. doi: 10.1016/j.jccw.2012.11.001
  21. Lewin ML, Peck SM. Pigment studies in skin grafts on experimental animals. J Invest Dermat. 1941;(4):483–503.
  22. Spencer GA, Tolmach JA. Exchange grafts in vitiligo. J Invest Dermatol. 1952;19(1):1–5. doi: 10.1038/jid.1952.59
  23. Avgirinou G, Antoniu K, Andreas SL. European Guidelines for the treatment of dermatological diseases. Ed. by A.D. Katsambas, T.M. Lotti. Moscow: MEDpress-inform; 2014. 724 p. (In Russ).
  24. Kubanova AA, Volnukhin VA, Proshutinskaya DV, et al. Possibilities of regenerative medicine in the treatment of patients with vitiligo. Bulletin Dermatol Venereol. 2014;90(3):43–52. (In Russ). doi: 10.25208/0042-4609-2014-90-3-43-52
  25. Fronchek A, Kasprovich-Furmanschik M, Plastik V, Ovcharchik-Sanek A. Surgical treatment of vitiligo. Field Environmental Protection Public Health. 2022;19(8):4812. (In Russ). doi: 10.3390/ijerph19084812
  26. Yannas IV. Similarities and differences between induced organ regeneration in adults and early foetal regeneration. J R Soc Interface. 2005;2(5):403–417. doi: 10.1098/rsif.2005.0062
  27. Liau LL, Ruszymah BH, Ng MH, Law JX. Characteristics and clinical applications of Wharton’s jelly-derived mesenchymal stromal cells. Curr Res Transl Med. 2020;68(1):5–16. doi: 10.1016/j.retram.2019.09.001
  28. Mizukami A, Swiech K. Mesenchymal stromal cells: From discovery to manufacturing and commercialization. Stem Cells Int. 2018;2018:4083921. doi: 10.1155/2018/4083921
  29. Zhang M, Xia T, Lin F, et al. Vitiligo: An immune disease and its emerging mesenchymal stem cell therapy paradigm. Transpl Immunol. 2023;(76):101766. doi: 10.1016/j.trim.2022.101766
  30. Hyvärinen K, Holopainen M, Skirdenko V, et al. Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Front Immunol. 2018;(9):771. doi: 10.3389/fimmu.2018.00771
  31. Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53(1):e12712. doi: 10.1111/cpr.12712
  32. Weiss AR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;(10):1191. doi: 10.3389/fimmu.2019.01191
  33. Bernardi L, Dos Santos CH, Pinheiro VA, et al. Transplantation of adipose-derived mesenchymal stem cells in refractory Crohn’s disease: Systematic review. Arq Bras Cir Dig (São Paulo). 2019;32(4):e1465. doi: 10.1590/0102-672020190001e1465
  34. Ra JC, Kang SK, Shin IS, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med. 2011;(9):181. doi: 10.1186/1479-5876-9-181
  35. Bellei B, Migliano E, Tedesco M, et al. Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: Technical considerations and clinical implications for regenerative surgery. Sci Reports. 2017;7(1):10015. doi: 10.1038/s41598-017-10710-6
  36. Zavala G, Sandoval C, Meza D, et al. Differentiation of adipose-derived stem cells to functional CD105neg CD73low melanocyte precursors guided by defined culture condition. Stem Cell Res Ther. 2019;10(1):249. doi: 10.1186/s13287-019-1364-0
  37. Kim JY, Park CD, Lee A, et al. Co-culture of melanocytes with adipose-derived stem cells as a potential substitute for co-culture with keratinocytes. Acta Derm Venereol. 2012;92(1):16–23. doi: 10.2340/00015555-1174
  38. Lim WS, Kim CH, Kim JY, et al. Adipose-Derived stem cells improve efficacy of melanocyte transplantation in animal skin. Biomol Ther. 2014;22(4):328–333. doi: 10.4062/biomolther.2014.065
  39. Kuroda Y, Kitada M, Wakao S, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U.S.A. 2010;107(19):8639–8643. doi: 10.1073/pnas.0911647107
  40. Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of muse cells to tissue regeneration. Cell Transplant. 2016;25(5):849–861. doi: 10.3727/096368916X690881
  41. Yamauchi T, Yamasaki K, Tsuchiyama K, et al. The potential of muse cells for regenerative medicine of skin: Procedures to reconstitute skin with muse cell-derived keratinocytes, fibroblasts, and melanocytes. J Invest Dermatol. 2017;137(12):2639–2642. doi: 10.1016/j.jid.2017.06.021
  42. Fisch SC, Gimeno ML, Phan JD, et al. Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): A seven-year retrospective. Stem Cell Res Ther. 2017;8(1):227. doi: 10.1186/s13287-017-0674-3
  43. Tian T, Zhang RZ, Yang YH, et al. Muse cells derived from dermal tissues can differentiate into melanocytes. Cell Reprogram. 2017;19(2):116–122. doi: 10.1089/cell.2016.0032
  44. Tsuchiyama K, Wakao S, Kuroda Y, et al. Functional melanocytes are readily reprogrammable from multilineage: Differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol. 2013;133(10):2425–2435. doi: 10.1038/jid.2013.172
  45. Ikeda Y, Wada A, Hasegawa T, et al. Melanocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS One. 2021;16(8):e0256622. doi: 10.1371/journal.pone.0256622
  46. Sun DZ, Abelson B, Babbar P, Damaser MS. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat Rev Urol. 2019;16(6):363–375. doi: 10.1038/s41585-019-0169-3
  47. Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1852. doi: 10.3390/ijms18091852
  48. Bellei B, Migliano E, Tedesco M, et al. Adipose tissue-derived extracellular fraction characterization: Biological and clinical considerations in regenerative medicine. Stem Cell Res Ther. 2018;9(1):207. doi: 10.1186/s13287-018-0956-4
  49. Bellei B, Papaccio F, Filoni A, et al. Extracellular fraction of adipose tissue as an innovative regenerative approach for vitiligo treatment. Exp Dermatol. 2019;28(6):695–703. doi: 10.1111/exd.13954
  50. Goldstein NB, Koster MI, Jones KL, et al. Repigmentation of human vitiligo skin by NBUVB is controlled by transcription of GLI1 and activation of the β-catenin pathway in the hair follicle bulge stem cells. J Invest Dermatol. 2018;138(3):657–668. doi: 10.1016/j.jid.2017.09.040
  51. Regazzetti C, Joly F, Marty C, et al. Transcriptional analysis of vitiligo skin reveals the alteration of Wnt pathway: A promising target for repigmenting vitiligo patients. J Invest Dermatol. 2015;135(12):3105–3114. doi: 10.1038/jid.2015.335
  52. Braunersreuther V, Jaquet V. Reactive oxygen species in myocardial reperfusion injury: From physiopathology to therapeutic approaches. Curr Pharm Biotechnol. 2011;13(1):97–114. doi: 10.2174/138920112798868782
  53. Xuan Y, Yang Y, Xiang L, Zhang C. The role of oxidative stress in the pathogenesis of vitiligo: A culprit for melanocyte death. Oxid Med Cell Longev. 2022;2022:8498472. doi: 10.1155/2022/8498472

Copyright (c) 2023 Olisova O.Y., Timashev P.S., Pishulina E.V., Semiklet J.M., Berdnikova E.A., Koteneva P.I., Lomonosov K.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies